
1/4

jm May 23, 2021

Preventing memory inspection on Windows
secret.club/2021/05/23/big-memory.html

 jm

May 23, 2021

Have you ever wanted your dynamic analysis tool to take as long as GTA V to query memory
regions while being impossible to kill and using 100% of the poor CPU core that encountered
this? Well, me neither, but the technology is here and it’s quite simple!

What, Where, WTF?

As usual with my anti-debug related posts, everything starts with a little innocuous flag that
Microsoft hasn’t documented. Or at least so I thought.

This time the main offender is NtMapViewOfSection, a syscall that can map a section object
into the address space of a given process, mainly used for implementing shared memory
and memory mapping files (The Win32 API for this would be MapViewOfFile).

NTSTATUS NtMapViewOfSection(

 HANDLE SectionHandle,

 HANDLE ProcessHandle,

 PVOID *BaseAddress,

 ULONG_PTR ZeroBits,

 SIZE_T CommitSize,

 PLARGE_INTEGER SectionOffset,

 PSIZE_T ViewSize,

 SECTION_INHERIT InheritDisposition,

 ULONG AllocationType,

 ULONG Win32Protect);

By doing a little bit of digging around in ntoskrnl’s MiMapViewOfSection and searching in
the Windows headers for known constants, we can recover the meaning behind most valid
flag values.

/* Valid values for AllocationType */

MEM_RESERVE 0x00002000

SEC_PARTITION_OWNER_HANDLE 0x00040000

MEM_TOPDOWN 0x00100000

SEC_NO_CHANGE 0x00400000

SEC_FILE 0x00800000

MEM_LARGE_PAGES 0x20000000

SEC_WRITECOMBINE 0x40000000

https://secret.club/2021/05/23/big-memory.html
https://secret.club/author/jm
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile

2/4

Initially I failed at ctrl+f and didn’t realize that 0x2000 is a known flag, so I started digging
deeper. In the same function we can also discover what the flag does and its main
limitations.

// --- MAIN FUNCTIONALITY ---

if (SectionOffset + ViewSize > SectionObject->SizeOfSection &&

 !(AllocationAttributes & 0x2000))

 return STATUS_INVALID_VIEW_SIZE;

// --- LIMITATIONS ---

// Image sections are not allowed

if ((AllocationAttributes & 0x2000) &&

 SectionObject->u.Flags.Image)

 return STATUS_INVALID_PARAMETER;

// Section must have been created with one of these 2 protection values

if ((AllocationAttributes & 0x2000) &&

 !(SectionObject->InitialPageProtection & (PAGE_READWRITE |
PAGE_EXECUTE_READWRITE)))

 return STATUS_SECTION_PROTECTION;

// Physical memory sections are not allowed

if ((Params->AllocationAttributes & 0x20002000) &&

 SectionObject->u.Flags.PhysicalMemory)

 return STATUS_INVALID_PARAMETER;

Now, this sounds like a bog standard MEM_RESERVE and it’s possible to
VirtualAlloc(MEM_RESERVE) whatever you want as well, however APIs that interact with
this memory do treat it differently.

How differently you may ask? Well, after incorrectly identifying the flag as undocumented, I
went ahead and attempted to create the biggest section I possibly could. Everything went
well until I opened the ProcessHacker memory view. The PC was nigh unusable for at least a
minute and after that process hacker remained unresponsive for a while as well. Subsequent
runs didn’t seem to seize up the whole system however it still took up to 4 minutes for the
NtQueryVirtualMemory call to return.

I guess you could call this a happy little accident as Bob Ross would say.

The cause

Since I’m lazy, instead of diving in and reversing, I decided to use Windows Performance
Recorder. It’s a nifty tool that uses ETW tracing to give you a lot of insight into what was
happening on the system. The recorded trace can then be viewed in Windows Performance
Analyzer.

https://processhacker.sourceforge.io/
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-recorder
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

3/4

This doesn’t say too much, but at least we know where to look.

After spending some more time staring at the code in everyone’s favourite decompiler it
became a bit more clear what’s happening. I’d bet that it’s iterating through every single page
table entry for the given memory range. And because we’re dealing with terabytes of of data
at a time it’s over a billion iterations. (MiQueryAddressState is a large function, and I didn’t
think a short pseudocode snippet would do it justice)

This is also reinforced by the fact that from my testing the relation between view size and
time taken is completely linear. To further verify this idea we can also do some quick napkin
math to see if it all adds up:

instructions per second (ips) = 3.8Ghz * ~8

page table entries (n) = 12TB / 4096

time taken (t) = 3.5 minutes

instruction per page table entry = ips * t / n = ~2000

In my opinion, this number looks rather believable so, with everything added up, I’ll roll with
the current idea.

Minimal Example

4/4

// file handle must be a handle to a non empty file

void* section = nullptr;

auto status = NtCreateSection(§ion,

 MAXIMUM_ALLOWED,

 nullptr,

 nullptr,

 PAGE_EXECUTE_READWRITE,

 SEC_COMMIT,

 file_handle);

if (!NT_SUCCESS(status))

 return status;

// Personally largest I could get the section was 12TB, but I'm sure people with more

// memory could get it larger.

void* base = nullptr;

for (size_t i = 46; i > 38; --i) {

 SIZE_T view_size = (1ull << i);

 status = NtMapViewOfSection(section,

 NtCurrentProcess(),

 &base,

 0,

 0x1000,

 nullptr,

 &view_size,

 ViewUnmap,

 0x2000, // <- the flag

 PAGE_EXECUTE_READWRITE);

 if (NT_SUCCESS(status))

 break;

}

Do note that, ideally, you’d need to surround code with these sections because only the
reserved portions of these sections cause the slowdown. Furthermore, transactions could
also be a solution for needing a non-empty file without touching anything already existing or
creating something visible to the user.

Conclusion

I think this is a great and powerful technique to mess with people analyzing your code. The
resource usage is reasonable, all it takes to set it up is a few syscalls, and it’s unlikely to get
accidentally triggered.

