Knockin’ on Heaven’s Gate — Dynamic Processor Mode Switching

@ rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching

George Nicolaou

Abstract

This post presents the research conducted under the domain of dynamic processor mode (or context)
switching that takes place prior to the invocation of kernel mode functions in 32bit processes running under a
64bit Windows kernel. Processes that are designed and compiled to execute under a 32bit environment get
loaded inside the Windows-on-Windows64 (WoW64) subsystem and are assigned threads running in IA-
32e compatibility mode (32bit mode). When a kernel request is being made through the standard WoW64
libraries, at some point, the thread switches to 64bit mode, the request is executed, the thread switches back
to compatibility mode and execution is passed back to the caller.

The switch from 32bit compatibility mode to 64bit mode is made through a specific segment eal-gate referred
to as the Heaven’s Gate, thus the title of this topic. All threads executing under the WoW64 environment can
execute a FAR CALL through this segment gate and switch to the 64bit mode.

The feature of mode switch can also be viewed from the security and maliciousness point of view. It can be
used as an anti reverse engineering technique for protecting software up to the malicious (or not) intends of
cross process generic library injection or antivirus and sandbox evasion. The result of this research is a
library named W640WoW64 which stands for Windows64 On Windows On Windows64.

Introduction

Within the WoW64 environment, threads that wish to switch between compatibility mode (32bit mode) to
64bit mode, in order to request the invocation of kernel mode functions, have to go through the Heaven Gate
located at code segment selector 0x0033 that-identifies-the-ecall-gate-inside-the-GBF. The process of context
switching occurs multiple times throughout the lifespan of a WoW64 process and is essential for their
compatibility with the Windows 64bit kernel. However, this feature creates a number of minor security issues
or inconsistencies to security or software analysis products. Over the next paragraphs, we will explore the
methodology used by the operating system when user mode applications engage in the invocation of kernel
functions as well as the differences between the two modes from the perspective of a thread. Next we shall
explore how context switching can be used by 32bit malicious processes to communicate, control and inject
libraries in 64bit mode applications using a library created just for this purpose.

Research Laboratory

This research was conducted on a Windows 7 64bit Operating System with all updates and patches installed
as of (see post date). The tools used are:

Name Usage Link
WinDBG x64 Used for debugging sessions between contexts | Download
Visual Studio C++ 2010 | Used for compiling the PQC code Download

Tracing to Heaven

117

https://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/
http://msdn.microsoft.com/en-US/windows/hardware/hh852363
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express

Before we get our hands dirty, we need to briefly dive into the Windows mechanisms of calling the heaven
gate. To do this we need to understand how the gate is used, the reasons, as well as what happens when we
switch to 64bit mode.

To begin with, we shall trace a call to ZwTestAlert. You can do this by loading any 32bit application on a 64bit
Windows operating system and issuing the following command on the first LdroDoDebuggerBreak
breakpoint.

bp ntdll32!ZwTestAlert

Note that the breakpoint is set for ntdll32 which is the 32bit WoW64 version of the ntdll library. If by any
chance you’ve set a breakpoint using the bp ZwTestAlert command then you’d be setting it to the 64bit ntdll
version of the library. Before we go any further let us check the modules currently loaded in memory. For this
example the PQC executable Heaveninjector.exe was used and the Im (list modules) command was
executed with the result illustrated in Figure 1.

0:000: lm

=tart =nd nodule name

oooooooo T ooaooooo0 ooooODOODOD 00405000 HeavenlInjector {private pdb =vmb
gooooooos74£80000 0o00OO0OO"74£88000 wowbdcpu {pdb symbol=) .
gooooooos74£90000 00000000 74fecO0O wowbdwin {pdb symbol=)
gooooooos74££0000 00000000 7502£000 wowbd {pdb symbol=)

gooooooos 77790000 00000000 77939000 ntdll {pdb svymbol=)
goooooons?7970000 00000000 ?7af0000 ntdllaz {pdb =ymbol=s)

Figure 1: Default Loaded Modules

As you can see there are two versions of the ntdll library, one being the 32bit one and the other the 64bit one.

Along side the executable we can list three other libraries which depend on the processor architecture
currently being used by your system. It is worth noting that the test OS is running on AMDG64.

Execute the program using the g command or the F5 key until you reach the breakpoint we’ve just set. You
can view the disassembly code of the ZwTestAlert function by hitting u (which disassembles 8 instructions
from the current address or 9 instructions if your platform runs on an Itanium processor.) !l or by bringing up
the Windbg’s Disassembly window from View > Disassembly. The code is shown in Figure 2.

0:000:=86> g

Breakpoint 0 hit

ntdll3zZ2 | ZvTestilert:

77991dal b27=010000 mow gax.17Eh
0:000:=86> u

ntdll32 1 ZwTestilert:

77991dal0 bA7=010000 Mo sax, 17Eh

77991da5 k902000000 T eoE, 2

77991daa 84542404 lea edx, [esp+4]
77991dae 64f£150000000 call dword ptr f=:[0C0h]
77991db5 83404 add e=p. 4

77991db8 3 ret

77991db9 2844900 lea ecx, [ecx]

ntdll 321 ZvThavRegistry:

77991dbc bE7L010000 mow eax,l7Fh

Figure 2: ZwTestAlert Disassembled Code

On a 32bit Windows 7 version the above function looks slightly different (See Figure 3).

0:000r u ZwTestilert
ntdll | ZuTesthAlert:

77045430 bs74010000 mow =ax,174h

77045435 bad003ferf mow edx,of f=et SharedUserData!SystenCallStub
770d45d3a f££12 zall dword ptr [edx]

770d5d3c o3 ret

77045434 8443900 lea ecx, [ecx]

Figure 3: ZwTestAlert 32bit Disassembled Code

217

http://rce.co/wp-content/uploads/2012/08/lm_heaveninject_exe.png
http://rce.co/wp-content/uploads/2012/08/unassemble_zwtestalert.png
http://rce.co/wp-content/uploads/2012/09/unassemble_zwtestalert32.png

An obvious difference between the two Operating Systems is the SYSENTER instruction located at
SharedUserData!SystemCallStub which is not present in the WoW64 ZwTestAlert function (Figure 2). That
instruction is replaced with a CALL instruction to a pointer located in fs:[0COh]. On Windows 32bit processes
the fs segment holds the address of the TEB for the current thread and the 0COh value signifies the offset
from that address to the value that is being read. To view the current TEB address we need to issue the
Iwow64exts.info command as shown in Figure 4 below. Note that the Windbg pseudo register $teb holds the

address of the 64bit TEB for this thread.

The value TEB32 contains the address of this thread’s TEB. We note that value and issue the df command to
dump the TEB structure, along with any values, into the command window. To do this we execute the

following command:

dt _teb 7efdd000

Where _teb is the symbol of the 32bit TEB and 7efdd000 is the address of the 32bit TEB. The resulting

0:000:x86 lwowbdexts info

PEB3Z: 0x7efde=000
PEBR4: 0x7efdf000

Wowed information

TEBR3Z: 0x7efdd0oo
TEB&4 . 0xVefdbinn

32 bit, StackBa=ze
StackLimit

for

Deallocation:

64 bit, StackBa=e
StackLimit

Deallocation:

Wowed TLS =lots:

WoWwed _TLS STACKPTERG4 :

WoWe4_TLS CPURESERVED:

current thread:

O=190000
O=1g8=000
O=90000

O=zafdzo
O=x8c000
O=zS0000

O0=000000000008ec10
O=000000000008£d20

WOWed_TLS_THCPUSIMULATION: 0O=0000000000000000
WoWed4_TLS_LOCALTHREADHEAP: 0=0000000000000000

WOWed_TLS_EXCEPTIONADDR:

O=0000000000000000

WOWed4_TLS_USERCALLBACEDATA: 0=0000000000000000
WOWe4_TLS EETENDED FLOAT: O=x=0000000000000000

WOWed4_TLS APCLIST:

WOWed_TLS FILESYSREDIR:
WOWe4_TLS LASTWOWCALL:

WOWe4_TLS_WOWE4IHFD:

O=x=0000000000000000
O=x0000000000000000
O=x0000000000000000
0=000000007efde248

Figure 4: WoW64 Information

output should be similar to the one shown in Figure 5.

3/17

http://rce.co/wp-content/uploads/2012/08/wow64exts.info_.png

0:000:=86> dt _teb Yefdd0oo
HeavenInjector!|_TEB

+0x=000 HtTib . _NHT_TIE
+0x01lzc EnvironmentPointer : (null)
+0x020 ClientId . _CLIENT_ID

+0x028 ActiweRpcHandle : (null)

+0x02c ThreadlocalStoragePointer | Ox7efddlZc Void
+0=030 ProcessEnvironmentBlock : O0x7efde000 _PEE
+0x034 La=tErrorValues 0

+0x038 CountOfOwnedCriticalSection=s : 0

+0=z03c C=rClientThread : (null)

+0=040 Wind2ThreadInfo : (null)

+0x044 UseriiREeserved o [26]1 0

+0xlaz U=erReserved : [E] 0

+0x0c0 WOW32Re=erved c 0=74f82320 Void
+0x0cd Currentlocale : 0=809

+0x0ch FpSoftwareStatusFegi=ster : 0
+0x0ce Sy=temBEezervedl : [54] (null)
+0xlad ExceptionCode : Ond

+0xlal ActiwvationContextStack : _ACTIVATION CONTEXT STACK
+0xlbc SpareBvtesl o [24 "

+0x1dd GdiTebBatch . _GDI_TEE BATCH
+0xtbd EealClientId ;. _CLIENT ID
+0=z6bzs GdiCachedProcessHandle : (null)
+0x6c] GdiClientPID .0

+0xbcd GdiClientTID .0

+MNzhrf GAd ThreadTacal T'I"lfl;l il
Figure 5: TEB32 Of Main Thread

As you can see the offset +0x0cO0 points the the WOW32Reserved field which contains the address
0x74f82320. All WoW64 calls to the kernel are being redirected to this address. If we disassemble any other
ntdlI32 functions such as ZwOpenProcess, NiLoadDriver, etc we can see that the same CALL instruction with
the same address is called.

Continuing the execution of the program and tracing into the call dword ptr fs:[0COh] instruction by hitting F71

or typing t into the command window we end up at the address pointed to by the WOW32Reserved field

which lands inside the wow64cpu library at function X86SwitchTo64BitMode as shown in Figure 6.
0:000:=86> t

wowbdocpul E865witchTo64BitMode:
74f82320 2ale2?£8743300 Jmp 0033:74F8271E

Figure 6: wow64cpu!X86SwitchTo64BitMode

The above instruction jumps to the given address of the code segment through a specified segment selector
eallgate. Intel’'s specification 4] refers to this instruction as a FAR Jump instruction which if it's segment
selector (in this case 0x0033) is a call gate then then the code jumps to the code segment specified in the
call gate descriptor (which is located in the GDT) and executes the code pointed to by the gate, if the
segment selector is for a code segment then a far jump to the segment is performed. which in this case
handles the switch from 32bit to 64bit.

When we trace the JMP instruction we end up being in 64bit mode at the address pointed to by the
instruction. The address contains the entry point of the wow64cpu!CpupReturnFromSimulatedCode function (
as shown in Figure 7) which in short, sets up the environment for the current system call and executes the
SYSCALL instruction. Once finished, all results are normalized for 32bit mode and the function returns back
to the initial 32bit system call shown in Figure 2.

4/17

http://rce.co/wp-content/uploads/2012/08/teb32.png
http://rce.co/wp-content/uploads/2012/08/wow64cpu_switch_to_64bit.png

WDw64c-u|C-u-ReturnFrDmﬁlmulatedCDde
6744800424 mow rod. dword

ooooooons ?4b22?23 458985bc000000 mow dword ptr [£13+DﬁCh] rBd

Qooo0oon” ?74b2272a 4189258000000 mow dword ptr [r13+0C8h].e=p
0oooooon®74b22731 498ba42480140000 mow rzp.gword ptr [r12+1480h]
ooooooon:74b22739 4983a4248014000000 and quord ptr [r12+1480k].0
goooooon:74b22742 448hda now rlld, ed=

wowbdcpul TurboDispatchJunpAddres=sStart .

Qooo0oon” 74b22745 41ff24cf Jmp gword ptr [rl5+rcx#*8]
wowbdcpulServicelHoTurbo:

ooooooon®74b22749 4189b5s4000000 mow dword ptr [rl13+044h].e=i
ooooooon®?4b22750 4189bd=0000000 mow dword ptr [rl13+040h].ed1
ooooooon®?4b22757 41899da83000000 mow dword ptr [rl3+048h].ebx
ooooooon”?4b2275= 418%9adb3000000 mow dword ptr [rl3+0B8h].ebp
goooooon:?4b22765 9c pushig

AAANAAAN* AL AA 30, I RN JE B

Figure 7: WoW64cpu!CpupReturnFromSimulatedCode Entry

For the purposes of this research a short assembly algorithm was devised to understand the effects of a FAR
CALL instruction through the heaven gate. The algorithm is shown below:

Label Instruction

main: CALL FAR 33:x64code

x64code: | RETF

When this algorithm was executed the value pushed by the far CALL instruction within the stack revealed an
additional segment selector ealt-gate 0x0023 (which is actually the 32bit code segment we just came from)
who'’s purpose is to switch from the current 64bit mode to the compatibility 32bit mode. Figure 8.1 lllustrates
the top of the stack right after the CALL. As you can see the last four (4) bytes 0x004011¢c3 contain the return
address whereas the preceding two (2) bytes 0x0023 contain the segment selector eal-gate number.

In conclusion, the process of switching modes is required for the

ooooooo0To0o018ffle 00000023004011c3

communication between the WoW64 processes and the windows 00000000 D018££24 0000000100403870
kernel. Figure 8.2 below illustrates the process discussed in the 00000000° 0018££2c 0000001400000000
above paragraphs. Figure 8.1: Heaven Gate After-CALL Return

Address

Fiii bbb i o e B it

e e
|1 e A b s T S e
e AN b — —

AT At

R i Lo B Bt

WoWe64 ZwTestAlert Call x64 Switch lllustrated

After-Switch Environment

Before we begin abusing the heaven gate, we need to understand the post-switch environment of the thread
including which libraries are loaded and how we can reconstruct it in such a way allowing us to execute any
64bit compiled code or libraries.

To begin with, we need to locate all 64bit libraries loaded along side the executable. We can identify them
using the Im command as shown in Figure 1 then using the /dh command in conjunction with the address of
a library to dump it's headers. Figure 9 illustrates this process for a single library wow64.

5/17

http://rce.co/wp-content/uploads/2012/09/retaddress.png
http://rce.co/wp-content/uploads/2012/09/segment_switch.png
http://rce.co/wp-content/uploads/2012/08/wow64cpu_cpupreturnfromsimulatedcode.png

0:000: 1m
=tart

gooooooo-”
gooooooo-”
gooooooo”
gooooooo”
gooooooo”
gooooooo”
poooooon”
poooooon”
gooooooon:®

A asap

oodoo00oo0
73310000
Z4b20000
74b30000
Z4b90000
75180000
76790000
77330000
77510000

=nd

goooooog”
goooooog”
noooooon”
noooooon”
noooooon”
goooooon”
gooooooo”
gooooooo”
ooooooong®

ood4osoaon
733cf000
Z4b2a000
Z4bac00n
Z4bcf 000
25290000
Je7dedan
77443000
Z7690000

0:000: 'dh 00000000 74L50000

File Type

FILE HEADER VALUES
mnachine (X643
E number of sections

2664
4E212272
0

. DLL

nodule name

HeavenlInjector (p
HSYCR100 {pdb =vm
wowbdopu (pdb =vm
wowhdwin {pdb =vm
wowhd {pdb =vm
kern=eliz {pdb =vm
KEENELEASE {pdb =
ntdll (pdb =vm
ntdll13z2 (pdb =vm

timne date stamp Sat Jul 16 08:32:34 2011

file pointer to symbol table

0 number of symbols
Fl =ize of optional header
2022 characteristics
Executable

Switching from 32bit to 64bit does not cause any other libraries to be loaded, therefore we reach to the
conclusion that only the following libraries are accessible and loaded for the 64bit mode of this process. We

App can handle :2gb addresses

DLL

Figure 9: Retrieving wow64 Headers

can verify this by first dumping the 64bit PEB structure using the following command:

dt ntdll!_peb @$peb -r

Next we locate the Ldr.InLoadOrderModuleList.Flink address and issue a /list command listing all libraries

currently loaded for this process. Figure 10 shows the PEB structure.

0:000> dt

ntdll!_peh @5peh —r
+0=000 InheritedAddressSpace :

oo

+0=001 EeadImageFileExzecOption=s : 0 '

+0=002 BeingDebugged

+0=003 BitField :
+0=003 ImagelUsesLargeFages
+0=x003 IsProtectedProcess

+0=x003 Is=slegacvFrocess

0=l
Oy0

w0

w0

o

+0x003 I=ImagelynanicallvREelocated
+0x003 SkipPatchinglzer3i2Forwarders

+0x003 SpareBits Qw000
+0x008 Hutant D=mffffffff"
+0x010 ImageBa=sAddress 0x00000000°
+0x018 Ldr Ox00000000°
+0=000 Length O0x58
+0x004 Initialized 0=zl "'
+0=x008 S=zHandle fnull)

+0=010 InLDadOrderMDduleiist

+0=000 Flink
+0=008 Blink

+0=020 InHemDrgOrderMDduleList

+0=000 Flink

+0=008 Blink :
+0=030 InInitializationCrderdModuleli=t : _LIST _ENTRY [0=00001(

+0=000 Flink :

+0=008 Blink
+0=z040 EntrvInProgre=ss
+0x048 ShutdownInProgress

To issue the llist command we need the address of the first InLoadOrderModuleList entry which is the Flink
entry located at address 0x00000000°005f3400 in the above figure. Next we issue the following command to

0=000
0=000

0=000
0=000

O=000

- O=000
{null)
a o

00
Qw0

FEFEEEEE Woid
00400000 Void
77462640 _PEE IDR_DaTh

o _LIST_ENTEY [0=00000000°005f3:

00000°005£3400 _LIST _ENTRY |
00000°005£4050 _LIST _ENTRY |

: _LIST_ENTRY [0=00000000° 005

00000~ 005£3410 _LIST _ENTRY |
00000 005f4060 _LIST ENTRY |

0oooo0 - 005£3530 _LIST_EWTRY |
00000 005f£3be0 _LIST_EWTRY |

Figure 10: 64Bit PEB Structure

dump the linked entries in the InLoadOrderModuleL.ist chain:

llist -x “dt _LDR_DATA_TABLE_ENTRY” 0x00000000°005f3400

6/17

http://rce.co/wp-content/uploads/2012/08/lm_dh_libraries.png
http://rce.co/wp-content/uploads/2012/08/64bitpeb.png

The resulting output should list the libraries we are seeking. Therefore, when switching to 64bit mode the
current process environment is running with the following:

1. In 64bit Mode
2. Has the following libraries loaded ntdll.dll, wow64.dll, wow64win.dll, wow64cpu.dll
3. Has separate TEB and PEB structures than the 32bit process

Unfortunately, our initial goal to execute any code or libraries within that environment lacks one key element.
When a process is loaded, the loader first loads the ntdll.dll library and right after that the kernel32.dll library.
In our case kernel32.dll is never loaded within the 64bit environment. Therefore, we need to load the library
using the LdrLoadDII function located within ntdll.

Issue 1: Aligning the stack for 64bit mode

Another issue that might come up with the execution of certain functions is the issue of maintaining the stack
alignment between modes. When switching to 64bit mode the stack register ESP, or in this case RSP, retains
it's original value aligned on a 32bit boundary. In order to overcome this issue all we have to do is “waste”
enough bytes to align the stack for 64bit execution then realign it before switching back to 32bit mode.

Issue 2: Identifying and calling ntdll API functions

After crossing the heaven’s gate, the environment we come across is no different than the unknown
environment of a simple shellcode environment. This means that our code has no prior knowledge of function
pointers or environment variables. In order to overcome this issue we would have to walk the PEB table,
identify the address of the ntdll library and then locate the necessary functions for the successful execution of
our payload.

Issue 3: Loading Kernel32.dll - Understanding The Constraints and Protections

Any attempts to load kernel32.dll using the LdrLoadDIl function would result to the error code 0xC0000018 (
STATUS_CONFLICTING_ADDRESSES). This is due to the fact that the default memory location of kernel32
is already mapped as private. Therefore, when LdrpFindOrMapDIl attempts to map the section of the image
using LdrpMapViewOfSection a process of walking the VAD tree is initialized resulting to a conflicting
address between the library’s preferred base and a privately allocated page at the same address. That page
is located at the original kernel32.dll base address and is placed there to prevent loading the library from a
WoW64 environment. LdrpMap ViewOfSection ends up loading the library at a different base and

returns STATUS_IMAGE_NOT_AT_BASE. This triggers an algorithm within LdrpFindOrMapDII function that
ends up comparing the library string provided by our call to LdrLoadDIl with the string located at
ntdll!LdrpKernel32DIIName, which contains the unicode string “kernel32.dII”. As a side note, it is worth
mentioning that the exact same processes occurs when loading the user32.dll library. The algorithm’s
purpose is to identify whether the system library kernel32.dIl has not been loaded at it's preferred base
address and if so unload it and return the conflicting addresses error.

In order to solve this issue, one could employ a simple hooking technique to redirect execution from the
string comparison function RtIEqualUnicodeString to a stub function that would force RtIEqualUnicodeString
to return a negative answer which would in turn result to the OS loading the kernel32.dll library at any base
address. This however is not a complete solution since certain functions contained within ntdll require
numerous structures from the library that are referenced using their absolute address. In addition the
kernel32 library’s initialization function KernelBaseDllInitialize (which is also the EP of the library) would fail
to execute and raise an unhandled exception in the process. Therefore, loading kernel32.dll at any base
address except the one specified by the operating system is a bad idea.

717

Loading kernel32 at its original base address requires an understanding of the methodology used to load a
32bit executable within the WoW64 environment. It is essential for us to identify the protections placed by the
loader so that they can be overcome.

When running the 64bit version of WinDbg the first breakpoint you come across is hit by the 64bit
ntdll!LdrpDoDebuggerBreak function prior to the invocation of any wow64 processing. If you hit F5 or type g
in the command line you view an output similar to the one shown in Figure 11.

0:000> g
ModLoad: 00000000° 7700000 00000000 771d4£000 WoWed_ IHMAGE SECTION
ModLoad: 000000007 75£90000 00000000 76020000 WoWed_ THMAGE SECTION
ModLoad: 00000000° 770c0000 00000000 7714f000 HOT_AN_IMAGE
ModLoad: 00000000° 76d10000 00000000 76=0a000 HOT_AN_IMAGE
ModLoad: 000000007 Y5£90000 00000000 7e0a0000 CoWindows~syswowbd~lkernseld2 dll
ModLoad: 00000000° 74£50000 00000000 74£96000 C:~Windows syswowh 4~ KERNELBASE . d11
ModLoad: 00000000° 75240000 00000000 75hL40000 C:~Windows syswowb4~UTSER3Z dl1
ModLoad: 000000007 75b50000 00000000 75he0Onn C:~Windows syswowh4~GDI32 411

[

M—=AT —=-4a . AnAAAannn® IIC-=nnNnn anannonnnn* 39 C—-nnn s TTa A e = —rrmrr—ee C A TDOLY A1 1

Figure 11: WoW64 Initialization

If you compare the addresses of the NOT_AN_IMAGE and the first WOW_IMAGE_SECTION with the
modules loaded in a 64bit application such as calc.exe (as shown in Figure 12 ') you will immediately identify
that those locations are actually the system wide base addresses for the kernel32.dll and user32.dll libraries.
However, if you execute the Im command at the 32bit executable’s EP. those modules are no longer
registered within the loader data table entry inside the PEB.

HModLoad: 00000000 f££40000 00000001 00023000 calc. exe

ModLoad: 00000000°773£0000 00000000 77599000 ntdll.dll

HodLoad: 00000000 770=0000 00000000 771df000 C:sWindowsssysteni2 lkernel3z dl11
ModLoad: 000007fe"{db70000 000007fe" fdbd=000 C:~Windows~systen3d2~KEENELBASE dll
HodLoad: 000007fe’fdfb0000 000007fe" fed3snon C:~Windows~systemn3d2~SHELL3Z2 411
HodLoad: 000007fe’fesc0000 0O00007fe fefGin0o CoxWindows~asystendd~nsvort dll
HodLoad: 000007fe’f£350000 000007fe" f£3c1000 C:~Windows~systen3d2~SHLWAPT d11
ModLoad: 000007fe"f£240000 000007fe"££2a7000 C:~Windowssysten3d2~GDI32 dll
HodLoad: 00000000 76410000 00000000 76e0a000 C:~Windows~systemnd2~USER32 . d11
HodLoad: 000007fe”fesb0000 000007fe" fesbe000 CoxWindows~asystend~LPK dll

Figure 12: calc.exe Initial Loaded Modules

In order to identify how these pages are allocated and assigned at the loader table we need to trace the
execution following up the first breakpoint (in 64bit ntdll!LdrpDoDebuggerBreak) we come across.
Therefore, we hit F10 or p until we reach the CALL instruction pointing to ntdll!lWow64Ldrplnitialize as shown
in Figure 13.

00000000 77434942 4483244049000 mov byte ptr [ntdll1LdrpInldrInit (000000
00000000 77434949 £0410fba?75001 lock btr dword r15+450k], 1

Q0000000 77434950 f£15725£0£00 call o tr [ntdll | Jowedldrplnitialize
aooooooos¥7434956 =b00 inp ntdll!IdrplnitializeProcess+0x1cld (0

oooooooo 77434958 488b9=2420000000 movwv rbx.gword ptr [rsp+0A0h]
Figure 13: Call to ntdll'Wow64Ldrplnitialize (wow64!Wow64Ldrplinitialize)

This function, located within wow64.dll, is responsible for initializing the 32bit Wow64 subsystem such as the
32bit ntdll.dll, calling the function that initializes filesystem redirections and so on. Since we are only
interested at the initialization of the page, we trace through its code until we reach the CALL to
wow64!Processinit as shown inFigure 14.

0o0o0oo0” 74c5c1a? 0£8503010000 ine wowbd | Towb4ldrpInitialize+0x190 (00000

00000000 74cE5clad 488d40d3ce80200 lea rox, [wowbd | CpuThreadSize (00000000° 74ci
' 74c5c1bd =867 wowbd | Proc nit c58f 20

gooooooo” 74c5c1b9 8bdS now ebx, eax

oooooo0n” 74cbclbb f£1537C0LE1F call gword ptr [wowed!_imp LdrProces=Initial

00000000° 74cEclcl 413bdd Cp ebx,rl3d

Figure 14: Call to wow64!Processlnit

8/17

http://rce.co/wp-content/uploads/2012/09/wow64_initialization.png
http://rce.co/wp-content/uploads/2012/09/calc_loadedmodules.png
http://rce.co/wp-content/uploads/2012/09/ntdllWow64LdrpInitialize.png
http://rce.co/wp-content/uploads/2012/09/wow64ProcessInit.png

This function’s responsibility, amongst other, is to load the debug wow64log.dll (which does not exist on
production systems) for debugging purposes, initialize filesystem redirection and most importantly, make our
work slightly more difficult by mapping the addresses of the libraries we wish to load. The

wow64!Initialize ContextMapper function call (shown in Figure 15) is responsible for mapping the
firstWOW64_IMAGE_SECTION for kernel32.dll and looking up the export table of the library (which falls
outside the scope of this research).

___________________________________ - M o em Lt e i pmmmma = m———_ =

aooooooo” 7459145 488529 test TOE, TCE

qooooooo” 74=59148 7406 je wowbd | Proces=sInit+0=230 (00000

Q0000000 74c5914a f£f1GG507f£f££ ¢~ call qword ptr [wowbd! imp LdrlUnloa
" 7459150 = Ca wowbd | InitializeContextHapper

gooooonnD” 7459155 85c0 test 28X, 2aX

qooooooo” 74259157 0£88a5000000 i= wowbd | ProcessInit+0=x2e2 (00000

Qooooooo” 74259154 45339 HOT 94, r9d

nnonmaonnMn®* ¥ 4~Ca1cn A0O0AC A TTAIN 1 == e P T LTl N P |

Figure 15: Call to wow64!InitializeContextMapper

We Trace over wow64!Initialize ContextMapper until the point where we come across wow64!Map64BitDlls
(as shown in Figure 16) who'’s purpose is to setup the environment is such a way thus denying the mapping
of our libraries to their original system-wide default base address.

00000000° 745591c5 B905ad140200 nov dword ptr [wowbd |Ntdl1132EiUserCallbackDiss

00000000 74c591ch 8b04255003fe?f mov eax,dword ptr [SharedlUserData+0=350 (0000

00000000° 74559142 890580140300 nov dword ptr [wowtd |Ntd116432Hap+0=8 (0000001
*74=591d8 =8570a0000

00000000 74=591dd 85=0 test =ax, 2ax

00000000° 74c591df 7821 is wowéd | ProcessInit+0x2e2 (00000000 7459202

Tracing through that function we hit the first interesting CALL instruction which points to
ntdll!LdrGetKnownDIISectionHandle (as shown in Figure 17). Unfortunately, looking up this function in your
favorite search engine does not produce any significant results (at least to the eyes of the author).
Therefore, the function prototype and purpose is explained in the followup paragraph.

0:000: p

wowbd |Mape4BitDlls+0=57:

00000000 74c59z8b 488b44d00 Mow rox,.gword ptr [rbp] ==:00000000° P4cBalci={wowbd! "=
0:000: p

wowbd | MapE4BitDl1=+0=5hb:

00000000 74c59=8f 4c8d442460 lea ri, [rep+60h]

0:000: p

wowbd |1 HapedBitDll=s+0=60:

00000000 74c59=294 3342 HOT edx, ed=

0:000> p

wowbd |1 MapEdBitDl1=+0=62 :

Qo00o0oN" 74ch9c96 £E£152474£££1F call gword ptr [wowbd!_imp_ ldrGetkKnownDllSectionHandle
0:000> dc rc=

00000000 74c53ef0 0065006b 0060072 006cO065 00320033 k.ern.e.l.3.2.
00000000°74c53£00 004002 O06c006c 00000000 OQOOQOOOOCO .4 .1.1.........
0o00oo000°74c53£10 00730025 00730025 00000000 00000000 %.=.%.8.........
00000000°74c53£20 74696249 69606169 6£43657a 7865746 InitializeContex
00000000°74c53£30 70614474 3a726570 69616620 2064656 tMapper: failed
00000000°74c53£40 20657564 66206f74 6e656c69 20656d61 due to filename
00000000 74c53£50 676befS6c 65206874 65656378 676e6964 length exceeding
00000000 74c53f60 G534£4420 58414d5f 5441505f 454c5£48 DOS _MAX PATH IE

Figure 17: Call to ntdlllLdrGetKnownDIISectionHandle

LdrGetKnownDIISectionHandle receives three arguments, first a pointer to the variable which holds the
Unicode name of the library (or section name), a Boolean flag which dictates which directory handle should
be used when loading the section. TRUE for the Wow64 directory containing the 32bit versions of the library
requested and FALSE for the 64bit version directory. Finally the last argument is a pointer to a variable which
would receive the handle of the section. Note that this function is essentially a wrapper for the
NtOpenSection routine. The function’s prototype is defined below:

9/17

http://rce.co/wp-content/uploads/2012/09/wow64InitializeContextMapper.png
http://rce.co/wp-content/uploads/2012/09/wow64Map64BitDlls.png
http://rce.co/wp-content/uploads/2012/09/Kernel32ntdllLdrGetKnownDllSectionHandle.png

NTSTATUS LdrGetKnownDIISectionHandle(
LPCSTR IpwzLibraryName,

BOOL bls32BitSection,

HANDLE * IphSection

);

Given what we know now and what is illustrated at Figure 17 we can safely deduct that the
wow64!Map64BitDIl function retrieves the handle of the section used to map kernel32 throughout all
processes. Next, that handle is used to call the ntdll/NtMap ViewOfSection 2 function as shown in Figure 18.
Note that at the same figure, at address 00000000°74c59ded the pointer to a unicode string which reads
“‘NOT_AN_IMAGE” is moved to the quad word pointed to by r13+28h, where at this specific location r13
holds the address of the 64bit TEB and offset +28 contains the ArbitraryUserPointer within the TIB structure.

noooooon: 74=59dbY 498b5d428 mow rhx,gword ptr [r13+28h]
goooo000” 74c59dbb 488bdc2460 mow rox, gword ptr [rsp+60h]
0o000000° 74c59del 488364245000 and gword ptr [rsp+50hk].0
0o000000° 74c59dek 488364245800 and gword ptr [r=p+58h].0
goooo000” 7459 e 744244801000000 mow dword ptr [r=p+48h].1
00000000 74c59dd4 8364244000 and dword ptr [rsp+40h].0
0o000000° 74c59dd9 <744243802000000 mowv dyord ptr [rsp+3Bh].2
0o000000° 74c59del 488d0530a5ffff lea rax, [wowtd! =tring' (00000000 74c543185]
00000000 74c59del8 4c8d442450 lea 8. [r=p+50h]

ooooo000” 74c59%ded 49894528 mow gword ptr [rl3+28h].rax
0o000000° 74c559d£1 4884442458 lea rax, [rsp+58h]

noooono0: 74c59df6 453329 =OT r9d. r9d

goooo000” 74c59d£9 4889442430 mow gword ptr [r=p+30h].rax
0o0000000°74c59die 488364242800 and gword ptr [rsp+28h].0
0ooo00o00" 74c559=04 488364242000 and gword ptr [rsp+20k].0
DDDDDDDD‘?4CEBEDa 4883caff or rd=, 0FFFFFFFFEFFFFFEFFRL

gword ptr [wowhd! imp HtHapViewlDfSection

Figure 18: Call to ntdll!NtMapViewOfSection

So far we have deducted that wow64 loads the section of kernel32 into memory at it’s correct base address (
also verified by the return value of NtMapViewOfSection) and named after the string put in
ArbitraryUserPointer prior to the invocation of NtMapViewOfSection. Immediately, and right after the call to
the mapping function, the section’s handle is closed and the freshly mapped section is unmapped using the
NtUnmapViewOfSection function. The reason for mapping and unmapping the section becomes obvious over
the next few instructions which are the cause of our original problem with kernel32. The proceeding function
call to NtAllocateVirtualMemory 141 (as shown in Figure 19) receives as arguments, you've guessed it, a
pointer to the original base of kernel32.dll, an AllocationType of MEM_RESERVE and Protect of
PAGE_EXECUTE_READWRITE.

00000000 74c59%e4b 4c8d4c2458 lea r9, [rsp+58h]
Qoooooo0-74c59=50 4884542450 lea rd=, [rsp+50h]

00000000 74=59=55 4533c0 HOT r8d. r8d

Qo0oooon” 74c59=58 488bch mow roE, rh=

00000000 74=59=5b =7442425840000000 moew dword ptr [r=p+28h]. 40k
DDDDUDDD‘?4059863 c?44242DDD2DUUDD o dword ptr r=p+ 2D 2DDDh

call

Figure 19: Call to ntdll!NtAllocateVirtualMemory

Next, the function re-iterates using “user32.dIl” as known section handle and proceeds with executing the
same algorithm of allocating the memory page. Once finished, the function returns towow64!ProcessInit and
the initialization process continues.

The above paragraphs have walked us through the process of protecting the pages where crucial libraries
are supposed to be loaded at. However, since the protection placed is just a memory allocation, it can be
overcome by simply freeing that memory page.

Constructing The Payload

10/17

http://rce.co/wp-content/uploads/2012/09/k32ntdllNtMapViewOfSection.png
http://rce.co/wp-content/uploads/2012/09/ntdllNtAllocateVirtualMemory.png

Over the next few paragraphs, we shall describe the payload stub’s code which is responsible for overcoming
the issues identified above. Henceforth, whenever we refer to the payload, we refer to the piece of 64bit code
that executes right after passing through the heaven’s gate.

Solving Issue 1

Before we begin doing any library loading we need to align the stack on a 64bit boundary. This means that
the stack needs to be aligned on an 8byte boundary from it's base. For example, if the stack is allocated at
address 0x00000000°00100000 then all proceeding elements should be referenced at multiples of 8 resulting
to a stack which resembles the following structure:

Address Element

0x00000000°00100000 | StackBase+0 (0)

0x00000000°00100008 | StackBase+8 (8)

0x00000000°00100010 | StackBase+10 (16)

0x00000000°00100018 | StackBase+18 (24)

StackBase+20 (32)

Bottom of Stack StackBase+X

Additionally, any modifications to the stack need to be backed up so the stack can be realigned back to it's
original 32bit boundary. The solution is rather simple, since the 64bit alignment allows only the first 61 bits of
the stack pointer value to be set then the last 3 bits have to be discarded. In order to understand this, let us
have a look at some binary values along with their hexadecimal representations as well as what happens
when we take away the last three bits of that value:

Binary Value | Hex Value | Without Last 3 Bits
0000 0001 0x01 0000 0000 (0x00)
0000 0011 0x02 0000 0000 (0x00)
0000 0100 0x04 0000 0000 (0x00)
0000 1000 0x08 0000 1000 (0x08)
0001 0000 0x10 0001 0000 (0x10)
0011 1001 0x39 0011 1000 (0x38)

As you can see when taking away the last 3 bits of each value, it becomes 64bit aligned. In order to code this
in assembly all we require is the AND and SUB instructions as follows:

MOV RAX, RSP Move the value of the stack pointer RSP to RAX.

AND RAX, 07h Logical AND RAX with value 07h (first 3 bits set).

CMP RAX, 0 Compare RAX with 0.

JE main_stack_ok If RAX is 0 (none of the 3 first bits are set) then stack is already aligned.

11/17

SUB RSP, RAX “Waste” or remove any of the three last bits that are set.

MOV bStackAlignment, al | Store the number of bytes we just subtracted into a local variable.

Then at the end of the function we add the subtracted bytes from the local variable bStackAlignment to
realign the stack pointer back to it’s initial value as shown below:

ADD SPL, Add to the lower byte of RSP the value we subtracted when aligning the
bStackAlignment stack

However, for the purposes of the W640WoW®64 library the lower two (2) bytes of the ESP register are ANDed
with the value OxFFF8 (since the Visual Studio MASM compiler doesn'’t like referencing the lower byte of the
stack register SPL).

Solving Issue 2

In order to prepare the environment for the execution of arbitrary code or library we need to retrieve a
number of API functions located in the 64bit loaded ntdll library.

o LdrLoadDIl - In order to load kernel32.dll and a payload library compiled for x64.

¢ LdrGetKnownDIISectionHandle — Which will be used to retrieve the section handle of kernel32.dll and
user32.dll in order to retrieve their original base address.

« NtFreeVirtualMemory- Which will be used to free the original library base address memory page that
was allocated by wow64!Map64BitDlls.

o NtMapViewOfSection — Which is used to map the section retrieved by LdrGetKnownDIISectionHandle
at a random base address so we can retrieve the library’s original base address from the PE Header.

¢ NtUnmapViewOfSection — To unmap and clean up the memory after the original base address of the
library has been retrieved.

In addition to that, the addresses of the following libraries are required:

o ntdll.dll Base Address — Which can be retrieved from the PEB.
o kernel32.dll Base Address — Which is returned by the LdrLoadDIl call or can be accessed through the
PEB.

For the purpose of retrieving the base address of the ntdll library, a function named GetModuleBase64 was
devised and implemented. You can find this function in w64wow64.c which is attached to this post. It receives
the library name and returns base address of the library. Implementation details for this function can be found
in the source code. For the purposes of this post all you need to know is that the function retrieves the PEB
of the current thread and walks the Ldr./nLoadOrderModuleList chain to retrieve the library base.

Additionally, retrieving function pointers from libraries is made possible with the use of another function in the
same file named GetProcAddress64. This function receives the module base as first argument and the API
function name as its second argument. The function walks through the RE header of the provided module,
loads up the IMAGE_EXPORT_DIRECTORY and identifies the function.

The following code within the Initialize W64WoW#64() function is self explanatory, its purpose is to resolve the
address of ntdll.dll and the first required
functions LdrGetKnownDIISectionHandle, NtFreeVirtualMemory, NtMapViewOfSection, NtUnmap ViewOfSection.

12/17

void * 1lvpNtdll = GetModuleBase64(L"ntdll.dll");
UNICODE_STRING64 sUnicodeString;

__int8 * lvpKernelBaseBase;

_int8 * lvpKernel32Base;

PLDR_DATA_TABLE_ENTRY64 lpsKernel32Ldr;
PLDR_DATA_TABLE_ENTRY64 lpsKernelBaseldr;

sFunctions.LdrGetKnownDl1lSectionHandle = GetProcAddress64(lvpNtdll,
"LdrGetKnownDllSectionHandle");

sFunctions.NtFreeVirtualMemory = GetProcAddress64(lvpNtdll,
"NtFreeVirtualMemory");

sFunctions.NtMapViewOfSection = GetProcAddress64(lvpNtdll,
"NtMapViewOfSection");

sFunctions.NtUnmapViewOfSection = GetProcAddress64(1lvpNtdll,
"NtUnmapViewOfSection");

Solving Issue 3

The next issue we come across, is the issue of properly loading the 64bit kernel32.dll library into the address

space of the process. One solution is to patch theRtIEqualUnicodeString function to return false when it's two

arguments are equal to “kernel32.dIl”. However, care must be taken to uninstall the hook right after
kernel32.dll is loaded since the next time a library is loaded it would reload it, resulting in a rather weirdly

looking address space with more than two kernel32.dll libraries loaded.

Our approach is much simpler and requires us to free the memory location of kernel32 and user32 library
default base addresses then load them independently using the LdrLoadDIl function. In order to do that, the
function FreeKnownDIIPage() was constructed which receives the section name Unicode string (the one
used in LdrGetKnownDIISectionHandle) and frees up the memory page by loading the section, walking
through the PE header to get the original base address and executesNtFreeVirtualMemory to free up the

memory location. Following is the prototype of this function

BOOL FreeKnownDllPage(wchar_t * lpczKnownDllName)

This function is called with the following arguments within the Initialize W64WoW#64() init function as shown

below:

if(FreeKnownDllPage(L"kernel32.dll") == FALSE) return FALSE;
if(FreeKnownDllPage(L"user32.dll") == FALSE) return FALSE;

The function implementation is given below:

13/17

BOOL FreeKnownDllPage(wchar_t * lpwzKnownDllName)

{
DWORD64 hSection = 0;
DWORD64 lvpBaseAddress = 0;
DWORD64 lvpRealBaseAddress = 0;
DWORD64 stViewSize = 0;
DWORD64 stRegionSize = 0,
PTEB64 psTeb;
/*
** X64Call of WOwW64Ext Library - http://blog.rewolf.pl/
** (Copyright (c) 2012 ReWolf)
*/
X64Call(sFunctions.LdrGetkKnownDllSectionHandle, 3,

(DWORD64) 1pwzKnownDl1Name,

(DWORD64)0,

(DWORD64)&hSection);

psTeb = NtTeb64();
psTeb->NtTib.ArbitraryUserPointer = (DWORD64)lpwzKnownDllName;
X64Call(sFunctions.NtMapViewOfSection, 10,

(DWORD64)hSection,

(DWORD64) -1,

(DWORD64)&1lvpBaseAddress,

(DWORD64)0,

(DWORD64)0,

(DWORD64)0,

(DWORD64)&stViewSize,

(DWORD64)ViewUnmap,

(DWORD64)0,

(DWORD64) PAGE_READONLY);

lvpRealBaseAddress =

(DWORD64)GetModule64PEBaseAddress((void *)lvpBaseAddress);

if(X64Call(sFunctions.NtFreeVirtualMemory, 4,

(DWORD64) -1,

(DWORD64)&1vpRealBaseAddress,

(DWORD64)&stRegionSize,

(DWORD64)MEM_RELEASE) != NULL) {
PrintLastError(); //XXX doesnt work
return FALSE;

}
X64Call(sFunctions.NtUnmapViewOfSection, 2, (DWORD64)-1,

(DWORD64)1vpBaseAddress);

return TRUE;
}

For now, all you need to know is that this function calls LdrGetKnownDIISectionHandle with the following
arguments:

1. IpwzLibraryName - The name of the known section contained withing IpwzKnownDIIName.
2. bls32BitSection — False, since we are loading the 64bit version of the library.
3. IphSection — A pointer to a local variable which shall receive the section handle

Next, once successfully executed the function calls NtMapViewOfSection to map the library at a random base
address (since the original is already allocated) with the following arguments:

14/17

1. SectionHandle — The handle contained withing the hSection local variable that was just retrieved.

2. ProcessHandle — Current process handle which is equal to -1.

. BaseAddress — A pointer to a local variable lvpBaseAddress which will receive the base address this
section will be loaded at.

. ZeroBits — Not required and set to 0.

. CommitSize - Not required since it is already set.

. SectionOffset — Not required and set to 0.

. ViewSize — A pointer to the local variable stViewSize which is set to 0 and will receive the section size.

. InheritDisposition - Set to ViewUnmap since we don’t plan on creating any child processes.

. AllocationType - Not used and set to 0.

. Win32Protect - Protection set to PAGE_READONLY since we only wish to read from it.

w

O ©O© o N O O s

1

Once executed, the NtMapViewOfSection function will place the base address of the newly loaded section in
IvpBaseAddress local variable which is then used as an argument to GetModule64PEBaseAddress() function
within w64wowé64.c to retrieve the BaseAddress field of the PE Header’s optional header. This address can
then be fed to NtFreeVirtualMemory '®! with the following arguments to free up the memory page:

1. ProcessHandle — Current process -1.

2. BaseAddress — Pointer to the real base address of the module retrieved through the
GetModule64PEBaseAddress function.

3. RegionSize — A pointer to a local variable which is set to 0.

4. FreeType — We wish to free up the memory therefore MEM_RELEASE is provided.

Finally, the NtUnmapViewOfSection is called in order to unmap the section that was just loaded just for the
sake of keeping the memory clean.

Once FreeKnownDIIPage finishes executing, all you have to do now is load kernel32 using LdrLoadDIl which
will load it at its original base. The code for that is shown below:

sUnicodeString.Length = 0x18;
sUnicodeString.MaximumLength = 0x1a;
sUnicodeString.Buffer = (DWORD64)L"kernel32.d1l";
if(X64Call(GetProcAddress64(lvpNtdll, "LdrLoadDl1ll"), 4,
(DWORD64)0,
(DWORD64)0,
(DWORD64)&sUnicodeString,
(DWORD64)&1vpKernel32Base) != NULL) {
PrintLastError();
return FALSE;
}

Once kernel32.dll and it’s static dependency KERNELBASE.dII are loaded, we need to call their initialization

Header and call the Dlimain function with the standard arguments and the DLL. PROCESS _ATTACH flag as
shown below:

15/17

lvpKernelBaseBase = (__int8 *)GetModuleBase64(L"KERNELBASE.d11l");
X64Call((lvpKernelBaseBase + (int)GetModule64EntryRVA(lvpKernelBaseBase)),
3,
(DWORD64)1vpKernelBaseBase,
(DWORD64)DLL_PROCESS_ATTACH,
(DWORD64)0);

X64Call((lvpKernel32Base + (int)GetModule64EntryRVA(lvpKernel32Base)),
3,
(DWORD64)1lvpKernel32Base,
(DWORD64)DLL_PROCESS_ATTACH,
(DWORD64)0);

Finally, once the libraries are loaded and in order to make the functional, there is one small detail that needs
to be taken care of. Each library’s Ldr data table entry contains two fields that are modified by the loader right
after a library is loaded. However, in the case of kernel32 and KERNELBASE those are not set. The fields
which we are referring to are the LoadCount field which needs to be set to -1 in order to lock in the library,
and the Flags field which needs to have the LDRP_ENTRY_PROCESSED and
LDRP_PROCESS_ATTACH_CALLED flags set. To do that, we make use of the GetModule64LdrTable()
function within w64wow64.c which receives a Unicode string of the library name (the one matched in the
BaseDIlIName entry within the LDR_DATA_TABLE_ENTRY structure) and returns a pointer to the data table
entry. Next, all we have to do is apply the mentioned modifications as shown below:

lpsKernel32Ldr = GetModule64LdrTable(L"kernel32.dll");
lpsKernel32Ldr->LoadCount = Oxffff;
lpsKernel32Ldr->Flags += LDRP_ENTRY_PROCESSED | LDRP_PROCESS_ATTACH_CALLED;

lpsKernelBaselLdr = GetModule64LdrTable(L"KERNELBASE.d11l");
lpsKernelBaselLdr->LoadCount = Oxffff;
lpsKernelBaselLdr->Flags += LDRP_ENTRY_PROCESSED | LDRP_PROCESS_ATTACH_CALLED;

This concludes the solution to the problem with loading and initializing kernel32.dIl within the 64bit mode of a
wow64 application. From this point on (given that any other initializations are made) you can execute any
kind of code you see fit.

Loading an External 64bit Payload DLL (Heavenlnjector)

Finally, once kernel32.dll gets loaded, the environment is ready to accommodate any external libraries which
can be loaded using the LoadLibrary function. For the purposes of this PQC code a payload library has been
coded which makes use of the CreateRemoteThread API function to inject a library in a 64bit application. The
payload library name is payload.dll and is included, along with it's source code in the file attached to this post.

The payload code loads this library using LoadLibrary and calls the exported function InjectLibrary.
Finally, the PQGC as a whole is consisted of the following files:

¢ heaveninject.exe — 32bit Executable which receives as arguments a 64bit process id and the library
pathname to inject into that process. It switches to 64bit using the w64wow64 library, loads payload.dll
using the exported function LoadLibrary64A from within w64wow64 and executes the InjectLibrary
function who’s pointer is retrieved using GetProcAddress64 again from within the w64wow64 library.

o payload.dll — A 64bit library responsible for injecting a library into the 64bit process.

o a.dll — A PQGC Hello World library which is injected into the process.

Final Notes

16/17

The provided proof of concept code is experimental and might require some additional coding to support
some external system libraries that might not be initialized properly.

Conclusions

In conclusion to this rather enormous post, we note that the techniques described above can be used or
abused as an anti-reverse engineering technique on 32bit applications rendering the code executed in 64bit
inaccessible by a 32bit debugger such as Ollydbg. Additionally, this technique can also have devastating
results on usermode sandbox or hooking technologies that might install hooks on 32bit system or application
libraries. Thank you for reading :).

Downloads

W640WoW64 Library: https://github.com/georgenicolaou/\W640\WoW64

Heavenlnjector: https://github.com/georgenicolaou/Heavenlinjector

PQGC Video for Heavenlnjector: http:/www.youtube.com/watch?v=Z1c_OrW7VaQ

17/17

https://github.com/georgenicolaou/W64oWoW64
https://github.com/georgenicolaou/HeavenInjector
http://www.youtube.com/watch?v=Z1c_OrW7VaQ

