
1/16

April 24, 2020

Windows DLL Hijacking (Hopefully) Clarified
itm4n.github.io/windows-dll-hijacking-clarified

Whenever a “new” DLL hijacking / planting trick is posted on Twitter, it generates a lot of

comments. “It’s not a vulnerability!” or “There is a lot of hijackable DLLs on Windows…” are

the most common reactions. Though, people often don’t really speak about the same thing,

hence the overall confusion which leads us nowhere. I don’t pretend to know the ultimate

truth but I felt the need to write this post in order to hopefully clarify some points.

Introduction

Whenever I write about something that involves DLL hijacking (e.g.: NetMan DLL

Hijacking), I assume that it’s common knowledge and that we are all on the same page. It

turns out that it’s a big mistake, for multiple reasons! First, DLL hijacking is just a

core concept and, in practice, there are some variants. Therefore, whether you are a

pentester, a security researcher or a system administrator, your own conception of it may

differ from someone else’s. And then, there is this recurring debate: is it a

vulnerability? Before giving a factual answer to this question, I’ll first remind what DLL

hijacking is about. Then I’ll illustrate two of its variants with real-life examples, depending on

what you are trying to achieve. Finally, I’ll try to give some insight into how you can lower the

risk of DLL hijacking.

DLL Hijacking: What are we talking about?

Dynamically compiled Win32 executables use functions which are exported by built-in or

third-party Dynamic Link Libraries (DLL). There are two main ways to achieve this:

At link time - When the program is compiled, an import table is written into the

headers of the Portable Executable (PE). To put it simple, it keeps track of which

function needs to be imported from which DLL. Therefore, whenever the program is

executed, the linker knows what to do and loads all the required libraries transparently

on your behalf.

At runtime - Sometimes, you need to or want to import a library at runtime. At this

point, the linker has already done its part of the job, so if you want to do so you’ll have

to take care of a few things yourself. In particular, you can call LoadLibrary()  or

LoadLibraryEx()  from the Windows API.

Note: in this post, I’ll consider only Win32 applications. Although they use the same

extension, DLLs in the context of .NET applications have a completely different meaning so I

won’t talk about them here. I don’t want to add to the confusion.

https://itm4n.github.io/windows-dll-hijacking-clarified/
https://itm4n.github.io/windows-server-netman-dll-hijacking/


2/16

According to the documentation, the prototype of these two functions is as follows:

HMODULE LoadLibrary(LPCSTR lpLibFileName); 
HMODULE LoadLibraryEx(LPCSTR lpLibFileName, HANDLE hFile, DWORD 
dwFlags); 

The main argument - lpLibFileName  - is the path of the library file you want to load.

Though, evaluating the full path of the file at runtime requires some work that we are not

always willing to do, especially when the system can retrieve this path by itself. For example,

instead of writing LoadLibrary("C:\Windows\System32\mylib.dll") , you could just

write LoadLibrary("mylib.dll")  and thus let the system find the DLL. This approach

makes a lot of sense for third-party applications because they don’t necessarily know this

path beforehand.

But then, if you don’t specify the full path of the library you want to load, how does the

system know where to find it? The answer is simple, it uses a predefined search order, which

is illustrated on the following diagram.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/01_dll-search-order.png


3/16

The locations in the “pre-search” are highlighted in green because they are safe (from a

privilege escalation perspective). If the name of the DLL doesn’t correspond to a DLL which

is already loaded in memory or if it’s not a known DLL, the actual search begins. The

program will first try to load it from the application’s directory. If it succeeds, the search

stops there otherwise it continues with the C:\Windows\System32  folder and so on…

Note: in this context, the term “Known DLL” has a very specific meaning. These DLLs are

listed in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs

registry key and are guaranteed to be loaded from the System folder.

I won’t bore you with the theory. Rather, I’ll illustrate this search order with some examples

based on the following source code. The following program uses the first command line

argument as the name of a library to load with LoadLibrary() .

HMODULE hModule = LoadLibrary(argv[1]); 
if (hModule) { 
   wprintf(L"LoadLibrary() OK\n"); 
   FreeLibrary(hModule); 
} else { 
   wprintf(L"LoadLibrary() KO - Error: %d\n", 
GetLastError()); 
} 

Scenario 1: loading a DLL which exists in the application’s directory.

The program finds the DLL in its directory C:\MyCustomApp , that’s the first location in the

search order so the library is loaded successfully. Everything is fine.

Scenario 2: loading a Windows DLL, dbghelp.dll  for example.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/02_loadlibrary-appdir.png


4/16

The program first tries to load the DLL from C:\MyCustomApp , the application’s directory,

and doesn’t find it there. Therefore, it tries to load it from the system directory

C:\Windows\System32 , where this library is actually located.

We can see a potential issue here. What if the C:\MyCustomApp  directory is configured with

incorrect permissions and allows any user to add files? You guessed it, a malicious version of

the DLL could be planted in this directory, allowing a local attacker to execute arbitrary code

in the context of any other user who would run this application. Although that’s DLL search

order hijacking, this first variant is also sometimes rightly or wrongly called DLL

Sideloading. It’s mostly used by malwares but it can also be used for privilege escalation

(see my article about DLL Proxying).

Note: in theory DLL Sideloading has a specific meaning. According to MITRE: “Side-loading

vulnerabilities specifically occur when Windows Side-by-Side (WinSxS) manifests are not

explicit enough about characteristics of the DLL to be loaded. Adversaries may take

advantage of a legitimate program that is vulnerable to side-loading to load a malicious

DLL.”

Scenario 3: loading a nonexistent DLL

If the target DLL doesn’t exist, the program continues its search in the other Windows

directories. If it can’t find it there, it tries to load it from the current directory. If it still can’t

find it, it eventually searches for it in all the directories that are listed in the %PATH%

environment variable.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/03_loadlibrary-system-dll.png
https://itm4n.github.io/dll-proxying/


5/16

We can see that a lot of DLL hijacking opportunities arise there. If any of the %PATH%

directories is writable, then a malicious version of the DLL could be planted and would be

loaded by the application whenever it’s executed. This is another variant which is sometimes

called Ghost DLL injection or Phantom DLL hijacking.

Scenario 4: loading a nonexistent DLL as NT AUTHORITY\SYSTEM

With this last scenario, we are slowly but surely approaching the objective. In the previous

examples, I ran the executable as a low-privileged user so that’s not representative of a

privilege escalation scenario. Let’s remediate this and run the last command as NT

AUTHORITY\SYSTEM  this time.

The exact same search order applies to NT AUTHORITY\SYSTEM  as well and that’s

completely normal. There is a slight difference though. The last directory in the search is

different. With the low-privileged user it was C:\Users\Lab-

User\AppData\Local\Microsoft\WindowsApps  whereas it’s now

C:\WINDOWS\system32\config\systemprofile\AppData\Local\Microsoft\WindowsApps .

This difference is due to a per-user path that was added starting with Windows 10:

%USERPROFILE%\AppData\Local\Microsoft\WindowsApps , where %USERPROFILE%

resolves to the path of the user’s home folder.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/04_loadlibrary-nonexisting.png
https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/05_loadlibrary-nonexisting-system.png


6/16

Anyway, by default, all these folders are configured with proper permissions. So, low-

privileged users wouldn’t be able to plant a malicious DLL, preventing them from hijacking

the execution flow of a service running as NT AUTHORITY\SYSTEM  for example. With this

demonstration, I hope that it’s now clear why DLL hijacking is not a vulnerability.

OK, if DLL hijacking isn’t a vulnerability, why all this fuss?

Well, as I said before, DLL hijacking is just a core concept, an exploitation technique if

you will. It’s just a means to an end. The end goal is either local privilege escalation or

persistence (or even AV evasion) in most cases. Though, the means may differ a lot

depending on your perspective. Based on my own experience, I know that this perspective

generally differs between pentesters and security researchers, hence the potential confusion.

So, I’ll highlight two real-life examples in the next parts.

DLL Hijacking From a Security Researcher’s Perspective

First of all, as a Windows bug hunter, if you want to find privilege escalation vulnerabilities

on the operating system itself, you’ll often want to start from a blank page, with a clean

installation of Windows. The objective is to prevent side-effects that could be caused by the

installation of third-party applications. That’s already a big difference between a researcher

and a pentester.

Previously, I said that a default installation of Windows is not vulnerable to DLL hijacking

because all the directories that are used in the DLL search are configured with proper

permissions so, how this technique can still be useful?

It turns out this technique comes in very handy when it comes to privileged file operations

abuse for example, especially arbitrary file write. Let’s say that you found a vulnerability in a

service that allows you to move any file you own to any location on the filesystem in the

context of NT AUTHORITY\SYSTEM . That’s cool but that’s somewhat limited. What you really

want to achieve is arbitrary code execution as NT AUTHORITY\SYSTEM . At this point, DLL

hijacking is the missing piece that completes the puzzle.

An arbitrary file write vulnerability opens up many opportunities for DLL hijacking because

you are not limited to the %PATH%  directories (scenario #3), you could also consider

hijacking a DLL in an application’s directory (scenario #2) or even in C:\Winows\System32

if it doesn’t exist there. Both DLL Sideloading and Phantom DLL Hijacking techniques

can then be used.

If you search for DLL Sideloading opportunities using Process Monitor on a default

installation of Windows, you’ll find a lot of them. Typically, any program which is not

installed in C:\Windows\System32  and tries to load a DLL from this folder without

specifying its full path will fall into this category.



7/16

Enough with the theory, let’s take a real-life example! On the below screenshot, you can see

that the WMI service loads the wbemcomn.dll  library on startup:

The first result is NAME NOT FOUND . That’s totally normal because wbemcomn.dll  is a

system library, its actual location is C:\Windows\System32\wbemcomn.dll . Though

wmiprvse.exe  tries to load it from C:\Windows\System32\wbem  because this is the

directory where it is installed.

Therefore, provided that you found an arbitary file write vulnerability, you could plant a

malicious version of wbemcomn.dll  in C:\Windows\System32\wbem . After a machine

reboot, your DLL would be loaded by the service as NT AUTHORITY\SYSTEM . Though in

practice you wouldn’t rely on this particular DLL hijacking opportunity in your exploit for

two major reasons:

A reboot is required - Let’s say you found a vulnerability that allows you to move a

file to an arbitrary location as SYSTEM. Ending you exploit chain with a machine

reboot after having successfully planted your DLL would be a shame. You’d rather

search for a DLL hijacking you can trigger on demand as a normal user.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/06_wmi-service-loadlibrary.png
https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/07_wmi-exe-folder.png


8/16

Denial of Service - Let’s say that you finally decided to plant your DLL in the wbem

folder because you didn’t find a better candidate. After a machine reboot, your DLL is

properly loaded by the service and you get your arbitary code execution as SYSTEM.

That’s cool but what about the service? Congratulations, you’ve just crashed it because

it wasn’t able to import its required dependencies. Again that’s a shame. One could

argue that you could craft a Proxy DLL in order to address this issue. Though in

practice this would add to your exploit development workload so you want to avoid that

as far as possible

This is only one example of DLL Sideloading. There is a ton of similar opportunities on a

default installation of Windows. That’s why, security researchers often say that DLL hijacking

on Windows is very common and widespread. From their perspective, they think of DLL

hijacking in its entirety. However, with the two previous points in mind, you can see that it’s

not that simple in the end. Although DLL hijacking is widespread, finding the perfect

candidate for your exploit can easily become a headache. That’s why exploits such as the

DiagHub technique by James Forshaw are very interesting. This specific technique is now

patched but it met all the criteria back then:

It could be triggered by a normal user through RPC and you could even choose the

name of the DLL you wanted to load. As long as it was in the System32  folder, it

would be loaded by the service.

You could safely execute your own code without risking a service crash.

On top of that, you didn’t have to write your code in DllMain() .

Microsoft finally prevented this exploit by enforcing code signing. In other words, only

Microsoft-signed libraries can now be loaded using this trick. Later on, I found another

technique that is not as good as this one but still meets almost all of the above criteria -

Weaponizing Privileged File Writes with the USO Service, but I digress…

That’s it for DLL hijacking in the context of Windows security research. What about

pentesters now?

DLL Hijacking From a Pentester’s Perspective

In the context of a pentest, the initial conditions are usually very different. You are given an

environment to compromise and you have to adpat based on what you find along the way.

Finding a 0-day vulnerability or leveraging the last privilege escalation exploit that was

released publicly is usually the option of last resort. The first things you’re looking for are

system misconfigurations. Based on my own experience, I’d say that it probably

represents 80% of the job.

https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://itm4n.github.io/usodllloader-part1/


9/16

Security issues caused by misconfigurations are common in corporate environments. That is

to some extent quite understandable because installing an operating system without any

additional software is pretty useless. And sometimes, these third-party applications

introduce vulnerabilities either because they are not installed correctly or they are

themselves vulnerable.

Based on what I explained previously, I’ll discuss the two most common DLL hijacking

scenarios you’ll face. Now for the setup, here is a common mistake I see very often in

corporate environments: a third-party application is installed at the root of the main

partition ( C:\ ) or is installed on a seperate partition ( D:\  for example).

If you don’t already know that, folders that are created at the root of a partition are granted

permissive rights. They allow any “Authenticated User” to create files and folders in them.

These permissions are then inherited by subdirectories by default. Therefore, if the program

installer doesn’t take care of that or if the administrator doesn’t check them, there is a high

chance that the application’s folder is vulnerable.

With this in mind, here are the two most common scenarios you’ll face:

1. The program installer created a service which runs as NT AUTHORITY\SYSTEM

and executes a program from this directory. In this example, we consider that the

permissions of the executable itself are properly configured though. In this case, there

is a high chance that it is vulnerable to DLL Sideloading. A local attacker could plant

a Windows DLL that is used by this service in the application’s folder.

2. The program installer added the application’s directory to the system’s

%PATH% . This case is a bit different. You could still use DLL Sideloading in order to

execute code in the context of any other user who would run this application but you

could also achieve privilege escalation to SYSTEM. What you need in this case is Ghost

DLL Hijacking because, as I explained before, a nonexistent DLL lookup will

ultimately end up in the %PATH%  directories.

From my experience, this second scenario is by far the most common one. So, assuming that

you find yourself in such situation, what would you need? Well, you’d need to find a

privileged process that tries to load a DLL from this unsecure folder. The most common place

to look for this kind of opportunity is Windows services.

But then, what are the criteria for finding the perfect candidate? They can be summarized in

these three points:

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/08_rootdir-permissions.png


10/16

It tries to load a nonexistent DLL without specifying its full path.

It doesn’t use a safe DLL search order.

It runs as NT AUTHORITY\SYSTEM . Actually it’s not strictly required but I will consider

only this case for simplicity. This particular subject will be discussed in an upcoming

article.

On Windows 10 (workstation), services that match these criteria have almost disappeared.

Therefore, I often say that DLL hijacking isn’t that common nowadays on Windows 10. That’s

because when I think of it I refer to missing DLLs which are loaded from the %PATH%

directories by services running as highly privileged account, which is only one variant of DLL

hijacking. Nevertheless there are still a few of these services. One of them is the Task

Scheduler, as explained in this blog post. This service tries to load the missing

WptsExtensions.dll  DLL upon startup.

As you can see on the above screenshot, the service tried to load this DLL from

C:\MyCustomApp  because this directory was added to the system’s %PATH% . Since this

directory is configured with weak permissions, any local user can therefore plant a malicious

version of this DLL and thus execute code in the context of this service after a machine

reboot.

Note: once again, the %PATH%  is an environment variable so it varies depending on the user

profile. As a consequence, the %PATH%  of the NT AUTHORITY\SYSTEM  account is often

different from the %PATH%  of a typical user account.

Though, you have to be very careful with this particular DLL hijacking if you want to exploit

it during a pentest. Indeed, when this DLL is loaded by the service, it’s not freed so you won’t

be able to remove the file. One solution is to stop the service as soon as you get your SYSTEM

shell, then remove the file and finally start the service again.

Note: starting/stopping the Task Scheduler service requires SYSTEM privileges.

http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-schedulerservice.html
https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/09_scheduler-dll-hijacking.png


11/16

This example applies to Windows 10 workstation but what about Windows servers? Well I

won’t discuss this here because I already did that in my previous post: Windows Server

2008R2-2019 NetMan DLL Hijacking. On all versions of Windows Server, starting with

2008 R2, the NetMan service is prone to DLL hijacking in the %PATH%  directories because

of the missing WLAN API. So, if you find yourself in the situation I just described, you could

trigger this service in order to load your malicious DLL as SYSTEM, very convenient.

How to prevent DLL Hijacking?

Hopefully, I made it clear that, whatever the situation, DLL hijacking isn’t a

vulnerability. It’s just an exploitation technique for getting code execution in the context of

an application or a service for example. An exploitation technique on its own is useless

though, what you need is a vulnerability such as weak folder permissions or a privileged file

operation abuse.

Weak folder permissions - This issue can be caused by the installation of a third-

party application. The installer should take care of that but that’s not always the case so

system administrators should pay extra attention to this issue.

Privileged file operation abuse - This issue is due to a flaw in the design of the

application. In this case, developpers should review the code in order to prevent such

operation on files and folders that can be controlled by normal users or implement

impersonation when possible.

Now, let’s say that the permissions of the application’s folder are properly set and that your

code is clean, but you want to go the extra mile. There are still a few things you can do in

order to reduce the risk of DLL hijacking in the %PATH%  directories.

You’ve probably noticed that I used the simple LoadLibrary()  function in my example but

I didn’t say anything about the second option: LoadLibraryEx() . As a reminder, here is its

prototype:

HMODULE LoadLibraryEx(LPCSTR lpLibFileName, HANDLE hFile, DWORD 
dwFlags); 

The first parameter is still the name (or the path) of the DLL but there are two other

arguments. According to the documentation, the second one - hFile  - is reserved and

should be set to NULL . The third argument, however, allows you to specify some flags that

will affect the behavior of the function. In our case, the three most interesting flags are:

https://itm4n.github.io/windows-server-netman-dll-hijacking/


12/16

LOAD_LIBRARY_SEARCH_APPLICATION_DIR  - If this value is used, the application’s

installation directory is searched for the DLL and its dependencies. Directories in the

standard search path are not searched.

Indeed, if this flag is used, the search is limited to C:\MyCustomApp .

LOAD_LIBRARY_SEARCH_SYSTEM32  - If this value is used, %windows%\system32  is

searched for the DLL and its dependencies. Directories in the standard search path

are not searched.

Indeed, if this flag is used, the search is limited to C:\Windows\System32 .

LOAD_LIBRARY_SEARCH_USER_DIRS  - If this value is used, directories added using the

AddDllDirectory()  or the SetDllDirectory()  function are searched for the DLL

and its dependencies.

Enough with the theory, let’s check a real-life example.

You probably know or you’ve probably heard about the IKEEXT DLL hijacking, that was

originally published here in 2012 as far as I can tell. Starting with Windows Vista and up to

Windows 8, the IKEEXT service loaded the missing wlbsctrl.dll  library upon startup

without specifying its full path and without using a safe DLL search order. Here is what it

looked like back then:

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/10_loadlibraryex-appdir.png
https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/11_loadlibraryex-system32.png
https://www.htbridge.com/advisory/HTB23108


13/16

Of course, the researcher who initially reported this to Microsoft was given the same usual

answer:

Microsoft has thoroughly investigated the claim and found that this is not a product
vulnerability. In the scenario in question, the default security configuration of the system has
been weakened by a third-party application. Customers who are concerned with this situation
can remove the directory in question from PATH or restrict access to the third-party’s
application directory to better protect themselves against these scenarios.

This is the official answer but then, starting with Windows 8.1, this DLL hijacking magically

disappeared. Have you ever wondered how and why? Well, let me tell you that IKEEXT still

tries to load this missing DLL, even in the latest version of Windows 10. But why don’t we

talk about it anymore? First things first, here is what it looks like now on Windows 10:

See? The service tries to load the DLL from C:\Windows\System32 , doesn’t find it and then

stops. Do you recognize this behavior? At this point, and based on what I’ve explained so far,

you probably see where I’m going with this.

Let’s take a look at the two versions of the ikeext.dll  file…

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/12_ikeext-win7.png
https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/13_ikeext-win10.png


14/16

Of course, there is nothing magical about this. It turns out that Microsoft just silently

patched this particular DLL hijacking by modifying the code of ikeext.dll .

LoadLibraryEx()  is now called instead of LoadLibrary()  with the flag

LOAD_LIBRARY_SEARCH_SYSTEM32 , thus restricting the search to %windir%\System32 .

LoadLibraryW(L"wlbsctrl.dll");                                          // 
Windows 7 
LoadLibraryExW(L"wlbsctrl.dll", NULL, LOAD_LIBRARY_SEARCH_SYSTEM32);    // 
Windows 10 

What is the cost of this change: one line of code, yes ONLY ONE LINE OF CODE!!!

With that in mind, I want you to think about a particular communication from Microsoft

Security Response Center (MSRC). In a blog post, entitled Triaging a DLL planting

vulnerability, they explicitly define what is considered a vulnerability and what is not:

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/14_ikeext-dll-loading.png
https://msrc-blog.microsoft.com/2018/04/04/triaging-a-dll-planting-vulnerability/


15/16

Did you read that? Microsoft won’t address DLL hijacking scenarios involving %PATH%

directories. I’ll let you draw your own conclusions from this…

Conclusion

In the end, DLL hijacking (in the %PATH%  directories) is not a vulnerability. It’s what

Microsoft keeps replying over and over again to people who report them. OK, we get that and

now what?

In this post, I discussed two versions of this problem:

DLL sideloading - If the permissions of an application’s folder are not properly

configured, that’s the responsibility of this application only and, most of the time, the

impact is limited to this application. So, there’s nothing special to say about it.

https://itm4n.github.io/assets/posts/2020-04-24-windows-dll-hijacking-clarified/15_dll-vuln-triaging.png


16/16

DLL hijacking in the %PATH%  directories - Again, if the permissions of an

application’s folder are not properly configured, that’s the responsibility of this

application. However, if it adds itself to the system’s %PATH% , that’s another story. In

this case, the entire system is put at risk. Any Windows service that attempts to

load a missing DLL without using a secure DLL search order can then be leveraged for

privilege escalation. Is this a normal situation? I don’t think so.

When you know that this second scenario can easily be prevented simply by changing one

line of code, I find it really hard to accept Microsoft’s answer to this issue. It’s even harder to

accept considering that they patch them silently in the end. Unfortunately, I know that there

are some people who keep relaying Microsoft’s argument blindly. The problem is that this

leads us nowhere. Do we want to improve security or do we just want to spend our time

figuring out who’s responsible for what?

In my opinion, a honest and constructive reply to people who report these issues would be

something like: “Thank you for your report, we don’t consider this a critical or important

security issue but we will address this in a future public release”. Perhaps I’m a bit naive and

my point of view is biased because I don’t have the big picture. I don’t know. Anyway, I’ll

conclude this post with an approximate translation of a quote from a French humorist: “If

you’re absolutely one hundred percent sure about something, there’s a high chance you are

wrong.”

Links & Resources

Triaging a DLL planting vulnerability

 
https://msrc-blog.microsoft.com/2018/04/04/triaging-a-dll-planting-vulnerability/

Project Zero - Windows Exploitation Tricks: Exploiting Arbitrary File Writes for Local

Elevation of Privilege

 
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-

exploiting.html

Windows 10 - Task Scheduler service - Privilege Escalation/Persistence through DLL

planting

 
http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-

schedulerservice.html

 

 

https://msrc-blog.microsoft.com/2018/04/04/triaging-a-dll-planting-vulnerability/
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-schedulerservice.html

