
1/8

Finding Interactive User COM Objects using PowerShell
tiraniddo.dev/2018/09/finding-interactive-user-com-objects_9.html

Easily one of the most interesting blogs on Windows behaviour is Raymond Chen's The Old

New Thing. I noticed he'd recently posted about using "Interactive User" (IU) COM objects to

go from an elevated application (in the UAC sense) to the current user for the desktop. What

interested me is that registering arbitrary COM objects as IU can have security consequences,

and of course this blog entry didn't mention anything about that.

The two potential security issues can be summarised as:

1. An IU COM object can be a sandbox escape if it has non-default security (for example

Project Zero Issue 1079) as you can start a COM server outside the sandbox and call

methods on the object.

2. An IU COM object can be a cross-session elevation of privilege if it has non-default

security (for example Project Zero Issue 1021) as you can start a COM server in a

different console session and call methods on the object.

I've blogged about this before when I discuss how I exploited a reference cycle bug in

NtCreateLowBoxToken (see Project Zero Issue 483) and discussed how to use my

OleView.NET tool find classes to check. Why do I need another blog post about it? I recently

uploaded version 1.5 of my OleView.NET tool which comes with a fairly comprehensive

PowerShell module and this seemed like a good opportunity on doing a quick tutorial on

using the module to find targets for analysis to see if you can find a new sandbox escape or

cross session exploit.

Note I'm not discussing how you go about reverse engineering the COM implementation for

anything we find. I also won't be dropping any unknown bugs, but just giving you the

information needed to find interesting COM servers.

Getting Started with PowerShell Module

First things first, you'll need to grab the release of v1.5 from the THIS LINK (edit: you can

now also get the module from the PowerShell Gallery). Unpack it to a directory on your

system then open PowerShell and navigate to the unpacked directory. Make sure you've

allowed arbitrary scripts to run in PS, then run the following command to load the module.

PS C:\> Import-Module .\OleViewDotNet.psd1

https://www.tiraniddo.dev/2018/09/finding-interactive-user-com-objects_9.html?m=1
https://blogs.msdn.microsoft.com/oldnewthing
https://blogs.msdn.microsoft.com/oldnewthing/20180905-00/?p=99655
https://bugs.chromium.org/p/project-zero/issues/detail?id=1079
https://bugs.chromium.org/p/project-zero/issues/detail?id=1021
https://googleprojectzero.blogspot.com/2016/01/raising-dead.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=483
http://oleview.net/
https://github.com/tyranid/oleviewdotnet/releases/download/v1.5/Release_v1.5.7z
https://www.powershellgallery.com/packages/OleViewDotNet/1.5

2/8

As long as you see no errors the PS module will now be loaded. Next we need to capture a

database of all COM registration information on the current machine. Normally when you

open the GUI of OleView.NET the database will be loaded automatically, but not in the

module. Instead you'll need load it manually using the following command:

PS C:\> Get-ComDatabase -SetCurrent

The Get-ComDatabase cmdlet parses the system configuration for all COM information my

tool knowns about. This can take some time (maybe up to a minute, more if you have Process

Monitor running), so it'll show a progress dialog. By specifying the -SetCurrent parameter we

will store the database as the current global database, for the current session. Many of the

commands in the module take a -Database parameter where you can specify the database

you want to extract information from. Ensuring you pass the correct value gets tedious after a

while so by setting the current database you never need to specify the database explicitly

(unless you want to use a different one).

Now it's going to suck if every time you want to look at some COM information you need to

run the lengthy Get-ComDatabase command. Trust me, I've stared at the progress bar too

long. That's why I implemented a simple save and reload feature. Running the following

command will write the current database out to the file com.db:

PS C:\> Set-ComDatabase .\com.db

You can then reload using the following command:

PS C:\> Get-ComDatabase .\com.db -SetCurrent

You'll find this is significantly faster. Worth noting, if you open a 64 bit PS command line

you'll capture a database of the 64 bit view of COM, where as in 32 bit PS you'll get a 32 bit

view.

Finding Interactive User COM Servers

With the database loaded we can now query the database for COM registration information.

You can get a handle to the underlying database object as the variable $comdb using the

following command:

PS C:\> $comdb = Get-CurrentComDatabase

However, I wouldn't recommend using the COM database directly as it's not really designed

for ease of use. Instead I provide various cmdlets to extract information from the database

3/8

which I've summarised in the following table:

Command Description

Get-ComClass Get list of registered COM classes

Get-ComInterface Get list of registered COM interfaces

Get-ComAppId Get list of registered COM AppIDs

Get-ComCategory Get list of registered COM categories

Get-ComRuntimeClass Get list of Windows Runtime classes

Get-ComRuntimeServer Get list of Windows Runtime servers

Each command defaults to returning all registered objects from the database. They also take

a range of parameters to filter the output to a collection or a single entry. I'd recommend

passing the name of the command to Get-Help to see descriptions of the parameters and

examples of use.

Why didn't I expose it as a relational database, say using SQL? The database is really an

object collection and one thing PS is good at is interacting with objects. You can use the

Where-Object command to filter objects, or Select-Object to extract certain properties and so

on. Therefore it's probably a lot more work to build on a native query syntax that just let you

write PS scripts to filter, sort and group. To make life easier I have spent some time trying to

link objects together, so for example each COM class object has an AppIdEntry property

which links to the object for the AppID (if registered). In turn the AppID entry has

a ClassEntries property which will then tell you all classes registered with that AppID.

Okay, let's get a list of classes that are registered with RunAs set to "Interactive User". The

class object returned from Get-ComClass has a RunAs property which is set to the name of

the user account that the COM server runs as. You also need to only look for COM servers

which run out of process, we can do this by filtering for only LocalServer32 classes.

Run the following command to do the filtering:

PS C:\> $runas = Get-GetComClass -ServerType LocalServer32 | ? RunAs -eq "Interactive

User"

You should now find the $runas variable contains a list of classes which will run as IU. If you

don't believe me you can double check by just selecting out the RunAs property (the default

4/8

table view won't show it) using the following:

PS C:\> $runas | Select Name, RunAs

Name RunAs

---- -----

BrowserBroker Class Interactive User

User Notification Interactive User

...

On my machine I have around 200 classes installed that will run as IU. But that's not the end

of the story, only a subset of these classes will actually be accessible from a sandbox such as

Edge or cross-session. We need a way of filtering them down further. To filter we'll need to

look at the associated security of the class registration, specifically the Launch and Access

permissions. In order to launch the new object and get an instance of the class we'll need to

be granted Launch Permission, then in order to access the object we get back we'll need to be

granted Access Permissions. The class object exposes this as the LaunchPermission and

AccessPermission properties respectively. However, these just contain a Security Descriptor

Definition Language (SDDL) string representation of the security descriptor, which isn't easy

to understand at the best of times. Fortunately I've made it easier, you can use the Select-

ComAccess cmdlet to filter on classes which can be accessed from certain scenarios.

Let's first look at what objects we could access from the Edge content sandbox. First we need

the access token of a sandboxed Edge process. The easiest way to get that is just to start Edge

and open the token from one of the MicrosoftEdgeCP processes. Start Edge, then run the

following to dump a list of the content processes.

PS C:\> Get-Process MicrosoftEdgeCP | Select Id, ProcessName

 Id ProcessName

 -- -----------

 8872 MicrosoftEdgeCP

 9156 MicrosoftEdgeCP

10040 MicrosoftEdgeCP

14856 MicrosoftEdgeCP

Just pick one of the PIDs, for this purpose it doesn't matter too much as all Edge CP's are

more or less equivalent. Then pass the PID to the -ProcessId parameter for Select-ComAccess

and pipe in the $runas variable we got from before.

PS C:\> $runas | Select-ComAccess -ProcessId 8872 | Select Name

https://docs.microsoft.com/en-us/windows/desktop/secauthz/security-descriptor-definition-language

5/8

Name

PerAppRuntimeBroker

...

On my system, that reduces the count of classes from 200 to 9 classes, which is a pretty

significant reduction. If I rerun this command with a normal UWP sandboxed process (such

as the calculator) that rises to 45 classes. Still fewer than 200 but a significantly larger attack

surface. The reason for the reduction is Edge content processes use Low Privilege

AppContainer (LPAC) which heavily cuts down inadvertent attack surface.

What about cross-session? The distinction here is you'll be running as one unsandboxed user

account and would like to attack the another user account. This is quite important for the

security of COM objects, the default access security descriptor uses the special SELF SID

which is replaced by the user account of the process hosting the COM server. Of course if the

server is running as a different user in a different session the defaults won't grant access. You

can see the default security descriptor using the following command:

Show-ComSecurityDescriptor -Default -ShowAccess

This command results in a GUI being displayed with the default access security descriptor.

You see in this screenshot that the first entry grants access to the SELF SID.

To test for accessible COM classes we just need to

tell the access checking code to replace the SELF

SID with another SID we're not granted access to.

You can do this by passing a SID to the -Principal

parameter. The SID can be anything as long as it's

not our user account or one of the groups we have

in our access token. Try running the following

command:

PS C:\> $runas | Select-ComAccess -Principal S-

1-2-3-4 | Select Name

Name

BrowserBroker Class

...

On my system that leaves around 54 classes, still a reduction from 200 but better than

nothing and still gives plenty of attack surface.

https://3.bp.blogspot.com/-ql1opP2JeQU/W5WQnbJU0QI/AAAAAAAACto/qjc4ZKjZkQA9jUZ7VgRN3qqaa01IbZGGgCLcBGAs/s1600/selfsid.PNG

6/8

Inspecting COM Objects

I've only shown you how to find potential targets to look at for sandbox escape or cross-

session attacks. But the class still needs some sort of way of elevating privileges, such as a

method on an interface which would execute an arbitrary executable or similar. Let's quickly

look at some of the functions in the PS module which can help you to find this functionality.

We'll use the example of the HxHelpPane class I abused previously (and is now fixed as a

cross-session attack in Project Zero Issue 1224, probably).

The first thing is just to get a reference to the class object for the HxHelpPane server class.

We can get the class using the following command:

PS C:\> $cls = Get-ComClass -Name "AP Client HxHelpPaneServer Class"

The $cls variable should now be a reference to the class object. First thing to do is find out

what interfaces the class supports. In order to access a COM object OOP you need a

registered COM proxy. We can use the list of registered proxy interfaces to find what the

object responds to. Again I have command to do just that, Get-ComClassInterface. Run the

following command to get back a list of interface objects:

PS C:\> Get-ComClassInterface $cls | Select Name, Iid

Name Iid

---- ---

IMarshal 00000003-0000-0000-c000-000000000046

IUnknown 00000000-0000-0000-c000-000000000046

IMultiQI 00000020-0000-0000-c000-000000000046

IClientSecurity 0000013d-0000-0000-c000-000000000046

IHxHelpPaneServer 8cec592c-07a1-11d9-b15e-000d56bfe6ee

Sometimes there's interesting interfaces on the factory object as well, you can get the list of

interfaces for that by specifying the -Factory parameter to Get-ComClassInterface. Of the

interfaces shown only IHxHelpServer is unique to this class, the rest are standard COM

interfaces. That's not to say they won't have interesting behavior but it wouldn't be the first

place I'd look for interesting methods.

The implementation of these interfaces are likely to be in the COM server binary, where is

that? We can just inspect the DefaultServer property on the class object.

PS C:\> $cls.DefaultServer

C:\Windows\helppane.exe

https://bugs.chromium.org/p/project-zero/issues/detail?id=1224

7/8

We can now just break out IDA and go to town? Not so fast, it'd be useful to know exactly

what we're dealing with before then. At this point I'd recommend at least using my tools NDR

parsing code to extract how the interface is structured. You can do this by pass an interface

object from Get-ComClassInterface or just normal Get-ComInterface into the Get-ComProxy

command. Unfortunately if you do this you'll find a problem:

PS C:\> Get-ComInterface -Name IHxHelpPaneServer | Get-ComProxy

Exception: "Error while parsing NDR structures"

At OleViewDotNet.psm1:1587 char:17

+ [OleViewDotNet.COMProxyInterfaceInstance]::GetFromIID($In

+

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    + CategoryInfo          : NotSpecified: (:) []

    + FullyQualifiedErrorId : NdrParserException

 

This could be bug in my code, but there's a more likely reason. The proxy could be an auto-

created proxy from a type library. We can check that using the following:

 

PS C:\> Get-ComInterface -Name IHxHelpPaneServer

 

Name                 IID             HasProxy   HasTypeLib

----                 ---             --------   ----------

IHxHelpPaneServer    8cec592c-07a1... True       True

 

We can see if the output that the interface has a registered type library, for an interface this

likely means its proxy is auto-generated. Where's the type library? Again we can use another

database command, Get-ComTypeLib and pass it the IID of the interface:

 

PS C:\> Get-ComTypeLib -Iid 8cec592c-07a1-11d9-b15e-000d56bfe6ee

 

TypelibId  : 8cec5860-07a1-11d9-b15e-000d56bfe6ee

Version    : 1.0

Name       : AP Client 1.0 Type Library

Win32Path  : C:\Windows\HelpPane.exe

Win64Path  : C:\Windows\HelpPane.exe

Locale     : 0

NativePath : C:\Windows\HelpPane.exe

 

Now you can use your favourite tool to decompile the type library to get back your interface

information. You can also use the following command if you capture the type library

information to the variable $tlb:

 



8/8

PS C:\> Get-ComTypeLibAssembly $tlb | Format-ComTypeLib

...

[Guid("8cec592c-07a1-11d9-b15e-000d56bfe6ee")]

interface IHxHelpPaneServer

{

   /* Methods */

   void DisplayTask(string bstrUrl);

   void DisplayContents(string bstrUrl);

   void DisplaySearchResults(string bstrSearchQuery);

   void Execute(string pcUrl);

}

 

You now know the likely names of functions which should aid you in looking them up in IDA

or similar. That's the end of this quick tutorial, there's plenty more to discover in the PS

module you'll just have to poke around at it and see. Happy hunting.

 

 


