
1/10

Kernel ETW is the best ETW
elastic.co/security-labs/kernel-etw-best-etw

12 September 2024•John Uhlmann
This research focuses on the importance of native audit logs in secure-by-design software,
emphasizing the need for kernel-level ETW logging over user-mode hooks to enhance anti-tamper
protections.

14 min read Perspectives

Preamble

A critical feature of secure-by-design software is the generation of audit logs when privileged operations are performed. These
native audit logs can include details of the internal software state, which are impractical for third-party security vendors to bolt on
after the fact.

Most Windows components generate logs using Event Tracing for Windows (ETW). These events expose some of Windows's
inner workings, and there are scenarios when endpoint security products benefit from subscribing to them. For security purposes,
though, not all ETW providers are created equal.

The first consideration is typically the reliability of the event provider itself - in particular, where the logging happens. Is it within the
client process and trivially vulnerable to ETW tampering? Or is it perhaps slightly safer over in an RPC server process? Ideally,
though, the telemetry will come from the kernel. Given the user-to-kernel security boundary, this provides stronger anti-tamper
guarantees over in-process telemetry. This is Microsoft’s recommended approach. Like Elastic Endpoint, Microsoft Defender for
Endpoint also uses kernel ETW in preference to fragile user-mode ntdll hooks.

https://www.elastic.co/security-labs/kernel-etw-best-etw
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/author/john-uhlmann
https://www.elastic.co/security-labs/category/perspectives
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://twitter.com/dez_/status/938074904666271744
https://www.elastic.co/security-labs/doubling-down-etw-callstacks


2/10

For example, an adversary might be able to easily avoid an in-process user-mode hook on ntdll!NtProtectVirtualMemory, but
bypassing a kernel PROTECTVM ETW event is significantly harder. Or, at least, it should be.

Sample ETW providers and where they are logged

The Security Event Log is effectively just persistent storage for the events from the Microsoft-Windows-Security-Auditing ETW
provider. Surprisingly, Security Event 4688 for process creation is not a kernel event. The kernel dispatches the data to the Local
Security Authority (lsass.exe) service, emitting an ETW event for the Event Log to consume. So, the data could be tampered with
from within that server process. Contrast this with the ProcessStart event from the Microsoft-Windows-Kernel-Process provider,
which is logged directly by the kernel and requires kernel-level privileges to interfere with.

The second consideration is then the reliability of the information being logged. You might trust the event source, but what if it is
just blindly logging client-supplied data that is extrinsic to the event being logged?

In this article, we’ll focus on kernel ETW events. These are typically the most security-relevant because they are difficult to bypass
and often pertain to privileged actions being performed on behalf of a client thread.

When Microsoft introduced Kernel Patch Protection, security vendors were significantly constrained in their ability to monitor the
kernel. Given the limited number of kernel extension points provided by Microsoft, they were increasingly compelled to rely on
asynchronous ETW events for after-the-fact visibility of kernel actions performed on behalf of malware.

Given this dependency, the public documentation of Windows kernel telemetry sources is unfortunately somewhat sparse.

https://github.com/search?type=code&q=repo:jdu2600/Windows10EtwEvents+PROTECTVM
https://www.elastic.co/security-labs/forget-vulnerable-drivers-admin-is-all-you-need
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/auditing/event-4688
https://www.elastic.co/security-labs/effective-parenting-detecting-lrpc-based-parent-pid-spoofing
https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs


3/10

The events in Microsoft-Windows-Kernel-Audit-API-Calls are somewhat opaque

Kernel ETW Events

There are currently four types of ETW providers that we need to consider.

Firstly, there are legacy and modern variants of “event provider”:

legacy (mof-based) event providers
modern (manifest-based) event providers

And then there are legacy and modern variants of “trace provider”:

legacy Windows software trace preprocessor (WPP) trace providers
modern TraceLogging trace providers

The “event” versus “trace” distinction is mostly semantic. Event providers are typically registered with the operating system ahead
of time, and you can inspect the available telemetry metadata. These are typically used by system administrators for
troubleshooting purposes and are often semi-documented. But when something goes really, really wrong there are (hidden) trace
providers. These are typically used only by the original software authors for advanced troubleshooting and are undocumented.

In practice, each uses a slightly different format file to describe and register its events and this introduces minor differences in how
the events are logged - and, more importantly, how the potential events can be enumerated.

Modern Kernel Event Providers

The modern kernel ETW providers aren’t strictly documented. However, registered event details can be queried from the operating
system via the Trace Data Helper API. Microsoft’s PerfView tool uses these APIs to reconstruct the provider’s registration manifest,
and Pavel Yosifovich’s EtwExplorer then wraps these manifests in a simple GUI. You can use these tab-separated value files of
registered manifests from successive Windows versions. A single line per event is very useful for grepping, though others have
since published the raw XML manifests.

These aren’t all of the possible Windows ETW events, however. They are only the ones registered with the operating system by
default. For example, the ETW events for many server roles aren’t registered until that feature is enabled.

Legacy Kernel Event Providers

The legacy kernel events are documented by Microsoft. Mostly.

Legacy providers also exist within the operating system as WMI EventTrace classes. Providers are the root classes, groups are the
children, and events are the grandchildren.

https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing#types-of-providers
https://learn.microsoft.com/en-us/windows/win32/wmisdk/managed-object-format--mof-
https://learn.microsoft.com/en-us/windows/win32/wes/writing-an-instrumentation-manifest
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/wpp-software-tracing
https://learn.microsoft.com/en-us/windows/win32/tracelogging/trace-logging-about
https://learn.microsoft.com/en-us/windows/win32/api/tdh/
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview/blob/319be737115e01f77c42804cd1d41755211347f3/src/TraceEvent/RegisteredTraceEventParser.cs#L88
https://github.com/zodiacon/EtwExplorer
https://github.com/jdu2600/Windows10EtwEvents/tree/master/manifest
https://github.com/nasbench/EVTX-ETW-Resources/tree/main/ETWProvidersManifests
https://github.com/nasbench/EVTX-ETW-Resources/issues/52
https://docs.microsoft.com/en-us/windows/win32/etw/msnt-systemtrace
https://learn.microsoft.com/en-us/windows/win32/etw/eventtrace


4/10



5/10

Enumerating MOF providers with wbemtest

To search the legacy events in the same way as modern eventTo search legacy events in the same way as modern events, these
classes were parsed, and the original MOF (mostly) reconstructed. This MOF support was added to EtwExplorer, and tab-
separated value summaries of the legacy events were these classes were parsed and the original MOF (mostly) reconstructed.
This MOF support was added to EtwExplorer and tab-separated value summaries of the legacy events published.

Enumerating MOF providers with ETW Explorer

The fully reconstructed Windows Kernel Trace MOF is here (or in a tabular format here).

Of the 340 registered legacy events, only 116 were documented. Typically, each legacy event needs to be enabled via a specific
flag, but these weren’t documented either. There was a clue in the documentation for the kernel Object Manager Trace events. It
mentioned PERF_OB_HANDLE, a constant that is not defined in the headers in the latest SDK. Luckily, Geoff Chappell and the
Windows 10 1511 WDK came to the rescue. This information was used to add support for PERFINFO_GROUPMASK kernel trace flags
to Microsoft’s KrabsETW library. It also turned out that the Object Trace documentation was wrong. That non-public constant can
only be used with an undocumented API extension. Fortunately, public Microsoft projects such as PerfView often provide
examples of how to use undocumented APIs.

With both manifests and MOFs published on GitHub, most kernel events can now be found with this query.

https://github.com/zodiacon/EtwExplorer/pull/3
https://github.com/jdu2600/Windows10EtwEvents/tree/master/mof
https://github.com/zodiacon/EtwExplorer/pull/3
https://github.com/jdu2600/Windows10EtwEvents/tree/master/mof
https://gist.github.com/jdu2600/a2b03e4e9cf19282a41ad766388c9856
https://github.com/jdu2600/Windows10EtwEvents/blob/master/mof/Windows_Kernel_Trace.tsv
https://learn.microsoft.com/en-us/windows/win32/etw/obtrace
https://geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/tracesup/perfinfo_groupmask.htm
https://github.com/microsoft/krabsetw/blob/master/examples/NativeExamples/kernel_trace_002.cpp
https://github.com/microsoft/perfview/blob/51ec1dffe9055ab58ba1b13d1b716b36760ed895/src/TraceEvent/ETWKernelControl.cs#L464-L469
https://github.com/search?type=code&q=repo:jdu2600/Windows10EtwEvents+kernel


6/10

Interestingly, Microsoft often obfuscates the names of security-relevant events, so searching for events with a generic name prefix
such as task_ yields some interesting results.

Sometimes the keyword hints to the event’s purpose. For example, task_014 in Microsoft-Windows-Kernel-General is enabled
with the keyword KERNEL_GENERAL_SECURITY_ACCESSCHECK.

And thankfully, the parameters are almost always well-named. We might guess that task_05 in Microsoft-Windows-Kernel-
Audit-API-Calls is related to OpenProcess since it logs fields named TargetProcessId and DesiredAccess.

Another useful query is to search for events with an explicit ProcessStartKey field. ETW events can be configured to include this
field for the logging process, and any event that includes this information for another process is often security relevant.

If you had a specific API in mind, you might query for its name or its parameters. For example, if you want Named Pipe events, you
might use this query.

In this instance, though, Microsoft-Windows-SEC belongs to the built-in Microsoft Security drivers that Microsoft Defender for
Endpoint (MDE) utilizes. This provider is only officially available to MDE, though Sebastian Feldmann and Philipp Schmied have
demonstrated how to start a session using an AutoLogger and subscribe to that session’s events. This is only currently useful for
MDE users as otherwise, the driver is not configured to emit events.

But what about trace providers?

Modern Kernel Trace Providers

TraceLogging metadata is stored as an opaque blob within the logging binary. Thankfully this format has been reversed by Matt
Graeber. We can use Matt’s script to dump all TraceLogging metadata for ntoskrnl.exe. A sample dump of Windows 11
TraceLogging metadata is here.

Unfortunately, the metadata structure alone doesn’t retain the correlation between providers and events. There are interesting
provider names, such as Microsoft.Windows.Kernel.Security and AttackSurfaceMonitor, but it’s not yet clear from our
metadata dump which events belong to these providers.

Legacy Kernel Trace Providers

WPP metadata is stored within symbols files (PDBs). Microsoft includes this information in the public symbols for some, but not all,
drivers. The kernel itself, however, does not produce any WPP events. Instead, the legacy Windows Kernel Trace event provider
can be passed undocumented flags to enable the legacy “trace” events usually only available to Microsoft kernel developers.

Provider Documentation Event Metadata

Modern Event Providers None Registered XML manifests

Legacy Event Providers Partial EventTrace WMI objects

Modern Trace Providers None Undocumented blob in binary

Legacy Trace Providers None Undocumented blob in Symbols

Next Steps

We now have kernel event metadata for each of the four flavours of ETW provider, but a list of ETW events is just our starting
point. Knowing the provider and event keyword may not be enough to generate the events we expect. Sometimes, an additional
configuration registry key or API call is required. More often, though, we just need to understand the exact conditions under which
the event is logged.

Knowing exactly where and what is being logged is critical to truly understanding your telemetry and its limitations. And, thanks to
decompilers becoming readily available, we have the option of some just-enough-reversing available to us. In IDA we call this
“press F5”. Ghidra is the open-source alternative and it supports scripting … with Java.

For kernel ETW, we are particularly interested in EtwWrite calls that are reachable from system calls. We want as much of the call
site parameter information as possible, including any associated public symbol information. This meant that we needed to walk the
call graph but also attempt to resolve the possible values for particular parameters.

https://en.wikipedia.org/wiki/Security_through_obscurity
https://github.com/search?type=code&q=repo:jdu2600/Windows10EtwEvents+kernel+task_
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://github.com/search?type=code&q=repo:jdu2600/Windows10EtwEvents+kernel+processstartkey
https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-enable_trace_parameters
https://github.com/search?type=code&q=repo:jdu2600/Windows10EtwEvents+kernel+namedpipe
https://www.youtube.com/watch?v=tuoA3KGKf7o
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-an-autologger-session
https://posts.specterops.io/data-source-analysis-and-dynamic-windows-re-using-wpp-and-tracelogging-e465f8b653f7
https://gist.github.com/jdu2600/288475bc43ea68636c28cb25ddeb934f
https://techcommunity.microsoft.com/t5/microsoft-usb-blog/how-to-include-and-view-wpp-trace-messages-in-a-driver-8217-s/ba-p/270778
https://github.com/microsoft/perfview/blob/51ec1dffe9055ab58ba1b13d1b716b36760ed895/src/TraceEvent/RegisteredTraceEventParser.cs#L81-L529
https://learn.microsoft.com/en-us/windows/win32/etw/retrieving-event-data-using-mof
https://gist.github.com/mattifestation/edbac1614694886c8ef4583149f53658
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-message-format-file


7/10

alt_text

EtwWrite documentation

The necessary parameters were the RegHandle and the EventDescriptor. The former is an opaque handle for the provider, and
the latter provides event-specific information, such as the event id and its associated keywords. An ETW keyword is an identifier
used to enable a set of events.

Even better, these event descriptors were typically stored in a global constant with a public symbol.



8/10

Example ntoskrnl.exe EVENT_DESCRIPTOR in Ghidra

We had sufficient event metadata but still needed to resolve the opaque provider handle assigned at runtime back to the metadata
about the provider. For this, we also needed the EtwRegister calls.

EtwRegister documentation

Example ntoskrnl.exe EtwRegister in Ghidra

The typical pattern for kernel modern event providers was to store the constant provider GUID and the runtime handle in globals
with public symbols.

Another pattern encountered was calls to EtwRegister, EtwEwrite, and EtwUnregister, all in the same function. In this case, we
took advantage of the locality to find the provider GUID for the event.

Modern TraceLogging providers, however, did not have associated per-provider public symbols to provide a hint of each provider’s
purpose. However, Matt Graeber had reversed the TraceLogging metadata format and documented that the provider name is
stored at a fixed offset from the provider GUID. Having the exact provider name is even better than just the public symbol we
recovered for modern events.

https://posts.specterops.io/data-source-analysis-and-dynamic-windows-re-using-wpp-and-tracelogging-e465f8b653f7
https://gist.github.com/mattifestation/edbac1614694886c8ef4583149f53658#file-tlgmetadataparser-psm1-L461-L473


9/10

Example TraceLogging Provider blob in Ghidra

This just left the legacy providers. They didn’t seem to have either public symbols or metadata blobs. Some constants are passed
to an undocumented function named EtwTraceKernelEvent which wraps the eventual ETW write call.

Example legacy provider EtwTraceKernelEvent call in Ghidra

Those constants are present in the Windows 10 1511 WDK headers (and the System Informer headers), so we could label these
events with the constant names.

ntwmi.h extract

This script has been recently updated for Ghidra 11, along with improved support for TraceLogging and Legacy events. You can
now find it on GitHub here - https://github.com/jdu2600/API-To-ETW

Sample output for the Windows 11 kernel is here.

Our previously anonymous Microsoft-Windows-Kernel-Audit-API-Calls events are quickly unmasked by this script.

Id EVENT_DESCRIPTOR Symbol Function

1 KERNEL_AUDIT_API_PSSETLOADIMAGENOTIFYROUTINE PsSetLoadImageNotifyRoutineEx

2 KERNEL_AUDIT_API_TERMINATEPROCESS NtTerminateProcess

3 KERNEL_AUDIT_API_CREATESYMBOLICLINKOBJECT ObCreateSymbolicLink

4 KERNEL_AUDIT_API_SETCONTEXTTHREAD NtSetContextThread

5 KERNEL_AUDIT_API_OPENPROCESS PsOpenProcess

6 KERNEL_AUDIT_API_OPENTHREAD PsOpenThread

7 KERNEL_AUDIT_API_IOREGISTERLASTCHANCESHUTDOWNNOTIFICATION IoRegisterLastChanceShutdownNotification

8 KERNEL_AUDIT_API_IOREGISTERSHUTDOWNNOTIFICATION IoRegisterShutdownNotification

Symbol and containing function for Microsoft-Windows-Kernel-Audit-API-Calls events

With the call path and parameter information recovered by the script, we can also see that the SECURITY_ACCESSCHECK event from
earlier is associated with the SeAccessCheck kernel API, but only logged within a function named SeLogAccessFailure. Only
logging failure conditions is a very common occurrence with ETW events. For troubleshooting purposes, the original ETW use
case, these are typically the most useful and the implementation in most components reflects this. Unfortunately, for security
purposes, the inverse is often true. The successful operation logs are usually more useful for finding malicious activity. So, the
value of some of these legacy events is often low.

https://github.com/winsiderss/systeminformer/blob/7ad69bf13d31892a89be7230bdbd47ffde024a2b/phnt/include/ntwmi.h#L725
https://github.com/jdu2600/API-To-ETW
https://github.com/jdu2600/API-To-ETW/blob/main/ntoskrnl.exe.csv
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-seaccesscheck


10/10

Modern Secure by Design practice is to audit log both success and failure for security relevant activities and Microsoft continues to
add new security-relevant ETW events that do this. For example, the preview build of Windows 11 24H2 includes some interesting
new ETW events in the Microsoft-Windows-Threat-Intelligence provider. Hopefully, these will be documented for security
vendors ahead of its release.

Running this decompiler script across interesting Windows drivers and service DLLs is left as an exercise to the reader.






https://www.cisa.gov/resources-tools/resources/secure-by-design
https://windows-internals.com/an-end-to-kaslr-bypasses/

