
1/2

Detecting Sandboxes Without Syscalls
pentest.party/posts/2024/detecting-sandboxes-without-syscalls

19.04.2024 · dadevel

The PEB, TEB and KUSER_SHARED_DATA structs are mapped into the memory space of every process.
They provide a wealth of
information to the process and can be accessed without having to perform syscalls.
Using them for anti-debugging is widely known and
documented for example by CheckPoint.
But they can also be used for stealthy anti-sandbox and anti-vm checks.

The following sandbox indicators might be interesting for both malware developers and sandbox vendors.
The code assumes the struct
definitions from VX-API.

constexpr uint32_t TICKS_PER_SECOND = 10'000'000;

const PEB* peb = GetPeb();

const KUSER_SHARED_DATA* ksd = GetKUserSharedData();

const uint32_t boot_count = ksd->BootId;

const uint32_t cpu_core_count1 = peb->NumberOfProcessors;

const uint32_t cpu_core_count2 = ksd->ActiveProcessorCount;

const double ram_size = static_cast<double>(ksd->NumberOfPhysicalPages) * 4096 / 1024 / 1024 / 1024; // in gigabyte

const LARGE_INTEGER time1 = { .LowPart = ksd->InterruptTime.LowPart, .HighPart = ksd->InterruptTime.High2Time };

const uint32_t uptime = time1.QuadPart / TICKS_PER_SECOND / 60 / 60; // in hours

const uint32_t os_major_version1 = ksd->NtMajorVersion;

const uint32_t os_major_version2 = peb->OSMajorVersion;

const bool license_valid = ksd->SystemExpirationDate.QuadPart == 0;

const bool secure_boot_enabled = ksd->DbgSecureBootEnabled;

const wchar_t* filepath = peb->ProcessParameters->ImagePathName.Buffer;

const LARGE_INTEGER time2 = { .LowPart = ksd->TimeZoneBias.LowPart, .HighPart = ksd->TimeZoneBias.High2Time };

const double timezone_offset = -1 * static_cast<double>(time2.QuadPart) / TICKS_PER_SECOND / 60 / 60; // in hours from UTC

const wchar_t* env = peb->ProcessParameters->Environment;

const wchar_t* computername = GetEnvVar(env, L"COMPUTERNAME");

const wchar_t* userdomain = GetEnvVar(env, L"USERDOMAIN");

const wchar_t* username = GetEnvVar(env, L"USERNAME");

const wchar_t* workdir = peb->ProcessParameters->CurrentDirectory.DosPath.Buffer;

I implemented a small proof of concept that collects these indicators and performs a DNS query for each, so that they show up in the sandbox
network log.
The results from VirusTotal are shown below.

Sandbox
Boot
Count

CPU
Cores

RAM
Size

OS
Version Licensed

Secure
Boot

File
Renamed Uptime Timezone COMPUTERNAME USERDOMAIN

My
Gaming
PC

523 16 32GB 10 yes yes no 74h GMT+2 gamingstation gamingstation

VirusTotal
CAPE

64 4 4GB 10 yes no no 0h GMT-7 desktop-RANDOM desktop-
RANDOM

VirusTotal
Zenbox

62-76 4 8GB 10 yes no no 0h GMT-7 desktop-RANDOM desktop-
RANDOM

Unknown
Sandbox
1

24 2 2GB 10 yes no no 0h GMT-7 laptop-RANDOM laptop-
RANDOM

Unknown
Sandbox
2

5 1 4GB 10 yes no no 0h GMT+2 horst-pc horst-pc

Note:
The OS version can not be used to differentiate between Windows 10 and 11.
It is set to 10 in both cases.

https://pentest.party/posts/2024/detecting-sandboxes-without-syscalls/
https://anti-debug.checkpoint.com/techniques/debug-flags.html
https://github.com/vxunderground/vx-api/blob/69e5232de6474a7e698619fe7760dc0e3c292258/VX-API/Internal.h
https://www.virustotal.com/

2/2

After testing various sandboxes it seems that boot count, Secure Boot status and uptime are strong generic sandbox indicators.
Besides that
there is still T1480/001 aka Environmental Keying to hide the payload itself from analysis.

The overall bottom line: Don't trust the analysis results of sandboxes too much.

https://attack.mitre.org/techniques/T1480/001/
https://0xpat.github.io/Malware_development_part_5/

