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The PEB, TEB and KUSER_SHARED_DATA structs are mapped into the memory space of every process.
They provide a wealth of
information to the process and can be accessed without having to perform syscalls.
Using them for anti-debugging is widely known and
documented for example by CheckPoint.
But they can also be used for stealthy anti-sandbox and anti-vm checks.

The following sandbox indicators might be interesting for both malware developers and sandbox vendors.
The code assumes the struct
definitions from VX-API.

constexpr uint32_t TICKS_PER_SECOND = 10'000'000;


const PEB* peb = GetPeb();

const KUSER_SHARED_DATA* ksd = GetKUserSharedData();


const uint32_t boot_count = ksd->BootId;


const uint32_t cpu_core_count1 = peb->NumberOfProcessors;

const uint32_t cpu_core_count2 = ksd->ActiveProcessorCount;


const double ram_size = static_cast<double>(ksd->NumberOfPhysicalPages) * 4096 / 1024 / 1024 / 1024;  // in gigabyte


const LARGE_INTEGER time1 = { .LowPart = ksd->InterruptTime.LowPart, .HighPart = ksd->InterruptTime.High2Time };

const uint32_t uptime = time1.QuadPart / TICKS_PER_SECOND / 60 / 60;  // in hours


const uint32_t os_major_version1 = ksd->NtMajorVersion;

const uint32_t os_major_version2 = peb->OSMajorVersion;


const bool license_valid = ksd->SystemExpirationDate.QuadPart == 0;


const bool secure_boot_enabled = ksd->DbgSecureBootEnabled;


const wchar_t* filepath = peb->ProcessParameters->ImagePathName.Buffer;


const LARGE_INTEGER time2 = { .LowPart = ksd->TimeZoneBias.LowPart, .HighPart = ksd->TimeZoneBias.High2Time };

const double timezone_offset = -1 * static_cast<double>(time2.QuadPart) / TICKS_PER_SECOND / 60 / 60;  // in hours from UTC


const wchar_t* env = peb->ProcessParameters->Environment;

const wchar_t* computername = GetEnvVar(env, L"COMPUTERNAME");

const wchar_t* userdomain = GetEnvVar(env, L"USERDOMAIN");

const wchar_t* username = GetEnvVar(env, L"USERNAME");


const wchar_t* workdir = peb->ProcessParameters->CurrentDirectory.DosPath.Buffer;


I implemented a small proof of concept that collects these indicators and performs a DNS query for each, so that they show up in the sandbox
network log.
The results from VirusTotal are shown below.
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Boot
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Renamed Uptime Timezone COMPUTERNAME USERDOMAIN

My
Gaming
PC

523 16 32GB 10 yes yes no 74h GMT+2 gamingstation gamingstation

VirusTotal
CAPE

64 4 4GB 10 yes no no 0h GMT-7 desktop-RANDOM desktop-
RANDOM

VirusTotal
Zenbox

62-76 4 8GB 10 yes no no 0h GMT-7 desktop-RANDOM desktop-
RANDOM

Unknown
Sandbox
1

24 2 2GB 10 yes no no 0h GMT-7 laptop-RANDOM laptop-
RANDOM

Unknown
Sandbox
2

5 1 4GB 10 yes no no 0h GMT+2 horst-pc horst-pc

Note:
The OS version can not be used to differentiate between Windows 10 and 11.
It is set to 10 in both cases.

https://pentest.party/posts/2024/detecting-sandboxes-without-syscalls/
https://anti-debug.checkpoint.com/techniques/debug-flags.html
https://github.com/vxunderground/vx-api/blob/69e5232de6474a7e698619fe7760dc0e3c292258/VX-API/Internal.h
https://www.virustotal.com/
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After testing various sandboxes it seems that boot count, Secure Boot status and uptime are strong generic sandbox indicators.
Besides that
there is still T1480/001 aka Environmental Keying to hide the payload itself from analysis.

The overall bottom line: Don't trust the analysis results of sandboxes too much.






https://attack.mitre.org/techniques/T1480/001/
https://0xpat.github.io/Malware_development_part_5/

