Hypervisor enforced security policies for NTOS, secure kernel and
a child partition

tandasat.github.io/blog/2024/02/12/hyper-v-configs.html

Feb 12, 2024

This post aims to clarify security policies implemented by the Windows hypervisor for the root partition VTL 0
(NTOS), 1 (secure kernel), and a child partition (guest VM) by comparing their VMCSes on an Intel platform.

Summary

| start with the summary of my take, as the rest of this article is fairly “dry”.

The most interesting difference is VTL 1 having writable code. | heard of this but never verified it myself. |
knew VTL 1 mapped UEFI runtime service code with the writable permission when the Memory Attributes
Table was unavailable, but my target system did have it and properly implemented WAX (ref). | am unclear
why code is left writable almost entirely. Similarly, it is questionable that IA32_EFER.NXE is not set for the
VTL 1 guest.

The other intriguing part is largely accessible 10 ports from VTL 0. | would have to study the functionality of
these 10 ports a bit more to be confident to say these are ok in this way. You may find the list of documented
IO ports in volume 1 of the PCH specification, for example:

. t I
Memory Mapping—Intel® 600 Series Chipset Family On-Package PCH I n e x
Table 7. Fixed I/0 Ranges Decoded by PCH
I/O Internal Unit (unless[E]: S i -
Address Read Target Write Target External)? Separate Enable/fDisable
20h - 21h Interrupt Controller | Interrupt Controller | Interrupt None
24h - 25h Interrupt Controller | Interrupt Controller | Interrupt MNone

On MSRs, besides the undocumented MSRs, it is worth recreating the list on newer models as it might
change depending on the existence of physical MSRs. Additionally, 1A32_SPEC_CTRL being writable from the
child partition is interesting. Could not a guest disable mitigation features and leak information? | would be
curious to know.

1/18

https://tandasat.github.io/blog/2024/02/12/hyper-v-configs.html
https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html#efi-memory-attributes-table
https://github.com/tandasat/List-UEFI-Configuration-Tables

On CR4, it is interesting that more bits are intercepted and shadowed for VTL 0 than the child partition. |
cannot think of a reason off the top of my head.

It may be good security research to compare these with other hypervisor-protected systems. Is there a
similar software architecture with a different setup, and would that imply overlooked security holes on that
system or Windows? In addition to that, being intercepted by a hypervisor does not mean there is no chance
of a bug; it is an attack surface to be inspected.

The rest of the post analyzes raw data.

Setup

| checked VMCS configurations on Windows 22H2 on the 9th generation Intel processor. The guest partition
is Windows 22H2 with Hyper-V configuration version 11.0. HVCI is enabled for the root partition and disabled
for the guest partition.

Comparison

MSRs

The lists of MSRs accessible without interception are the same between VTL 0 and 1. The child partition can
access only a subset of these MSRs.

¥ Details
This is a list of writable MSRs for VTL 0 and 1. Ones writable from the child partition are marked with (G).

e 0x0-1A32 P5 MC _ADDR

e 0x48 - IA32_SPEC_CTRL (G)

e 0x49 - IA32_PRED_CMD (G)

e 0xc5-1A32 PMC4

e 0xc6 - 1A32_PMC5

e 0xc7 - 1A32_PMC6

e 0xc8 - 1A32_PMC7

e 0xe2 - MSR_PKG_CST_CONFIG_CONTROL
e Oxe3 -

e 0Oxe7 - IA32_MPERF

e 0xe8 - IA32_APERF

e 0x10b - IA32_FLUSH_CMD (G)

e 0x17b-1A32 MCG_CTL

e 0x17f - MSR_ERROR_CONTROL
e 0x18a-1A32_PERFEVTSEL4

e 0x18b - IA32_PERFEVTSEL5

2/18

https://gist.github.com/tandasat/3a60ee4cc5b9519cadf60393814918e9

0x18c - IA32_PERFEVTSELG6

0x18d - IA32_PERFEVTSEL7

0x198 - IA32_PERF_STATUS

0x199 - IA32_PERF_CTL

0x19a - IA32_CLOCK_MODULATION
0x19b - IA32_THERM_INTERRUPT
0x19c - IA32_THERM_STATUS
0x19d - MSR_THERMZ2_CTL

Ox1a2 - MSR_TEMPERATURE_TARGET
Ox1ac - MSR_TURBO_POWER_CURRENT_LIMIT

Ox1ad - MSR_TURBO_RATIO_LIMIT
0x1b0 - IA32_ENERGY_PERF_BIAS

0x1b1 - 1A32_PACKAGE_THERM_STATUS
0x1b2 - IA32_PACKAGE_THERM_INTERRUPT

Ox1fa - IA32 DCA_0 CAP

Ox1fc - MSR_POWER _CTL

0x30c - IA32_FIXED_CTR3

0x30d - MSR_1Q_COUNTER1
0x30e - MSR_1Q_COUNTER2
0x30f - MSR_IQ_COUNTER3
0x310 - MSR_1Q_COUNTER4
0x311 - MSR_1Q_COUNTERS5
0x312 -

0x313 -

0x314 -

0x315 -

0x316 -

0x317 -

0x318 -

0x329 - MSR_PERF_METRICS
0x4c5 - 1A32_A PMC4

0x4c6 - IA32_A PMC5

Ox4c7 - 1A32_A _PMC6

0x4c8 - 1A32_A PMC7

0x601 - MSR_VR_CURRENT_CONFIG
0x609 -

0x60a - MSR_PKGC3_IRTL

0x60b - MSR_PKGC_IRTL1

0x60c - MSR_PKGC IRTL2

0x610 - MSR_PKG_POWER_LIMIT
0x615 - PLATFORM_POWER_LIMIT

3/18

« 0x61e - MSR_PCIE_PLL_RATIO
« 0x620 - UNCORE_RATIO_LIMIT

e 0x621- MSR_UNCORE_PERF_STATUS

« 0x64f - MSR_CORE_PERF_LIMIT_REASONS

« 0x65c - MSR_PLATFORM_POWER_LIMIT

« 0x6b0 - MSR_GRAPHICS_PERF_LIMIT_REASONS
e 0x6b1-MSR_RING PERF_LIMIT_REASONS

e 0x772 - IA32_HWP_REQUEST PKG

e 0x773 - IA32_HWP_INTERRUPT

e 0x774 - IA32_HWP_REQUEST

e Ox777 - IA32_HWP_STATUS

e 0x17d1 - IA32_HW_FEEDBACK_CONFIG

e 0x17d2 - IA32._ THREAD FEEDBACK_CHAR

« 0x17da - IA32_ HRESET ENABLE

« 0xc0000100 - IA32_FS_BASE (G)

« 0xc0000101 - IA32_GS_BASE (G)

« 0xc0000102 - IA32_ KERNEL_GS_BASE (G)

10 ports

The lists of 10 ports accessible without interception are different between 3 configurations.

e For VTL 0, all ports except below are accessible:

0x20, 0x21, O0xa0, Oxa1 - Master and Slave PIC (reference)
0x64 - PS/2 Controller (reference)

0xcf8, Oxcfc-0xcff - PCI config address and data (reference)
0x1805 - (upper) PM1 control registers

e For VTL 1, all ports are accessible.

o For the child partition, none of the ports are accessible.

[¢]

[¢]

o

(¢]

Memory

Below are a few observations with a quick look.

e For both VTL 0 and 1, translations are identity-mapped.

e For VTL 1, code is almost entirely writable even if HVCI is enabled for VTL 0.

o For the child partition, translations are simple offsets within a few large blocks of physical memory.
For example, when GPA 0x0 is mapped to PA 0x224200000, GPA 0x4600000 is mapped to
0x228800000 (0x224200000 + 0x4600000).

Control fields

Pin-based VM-execution controls

4/18

https://wiki.osdev.org/PIC
https://wiki.osdev.org/%228042%22_PS/2_Controller
https://wiki.osdev.org/PCI

There is no difference between the 3 configurations.

¥ Details

“1” means the feature is enabled.

VILO VTL1 Child Bits

1 1 1 0 External-interrupt exiting

1 1 1

1 1 1

1 1 1 3 NMI exiting

1 1 1

1 1 1 5 Virtual NMls

0 0 0 6 Activate VMX preemption timer
0 0 0 7 Process posted interrupts

Primary processor-based VM-execution controls

There are a few differences.

V¥ Details

o for VTL 1, “Interrupt-window exiting” is enabled
 for the child partition, MWAIT, MONITOR, and MOV-DR are intercepted
« for the child partition, all IO port access are intercepted

“1” means the feature is enabled.

VILO VTL1 Child Bits

0 0 0

1 1 1

0 1 0 2 Interrupt-window exiting /.
1 1 1 3 Use TSC offsetting

1 1 1

1 1 1

5/18

VILO VTL1 Child Bits

1 1 1

1 1 1 7 HLT exiting

1 1 1

0 0 0 9 INVLPG exiting

0 0 1 10 MWAIT exiting /.

1 1 1 11 RDPMC exiting

0 0 0 12 RDTSC exiting

1 1 1

1 1 1

0 0 0 15 CR3-load exiting

0 0 0 16 CR3-store exiting

0 0 0 17 Activate tertiary controls
0 0 0

0 0 0 19 CR8-load exiting

0 0 0 20 CR8-store exiting

1 1 1 21 Use TPR shadow Setting
0 0 0 22 NMI-window exiting

0 0 1 23 MOV-DR exiting /.1

0 0 1 24 Unconditional I/O exiting /.
1 1 0 25 Use 1/O bitmaps /.

1 1 1

0 0 0 27 Monitor trap flag

1 1 1 28 Use MSR bitmaps

0 0 1 29 MONITOR exiting /.1

0 0 0 30 PAUSE exiting

6/18

VTLO VTL1 Child Bits

1 1 1 31 Activate secondary controls

Secondary processor-based VM-execution controls

There are a few differences:

e For the child partition, “WBINVD” is intercepted.
¢ “Mode-based execute control for EPT” is enabled only for VTL 0. This is because VTL 1 does not have
as strict memory protection as VTL 0, and the child partition (VM) was not configured to enable HVCI.

¥ Details
“1” means the feature is enabled.

VTLO VTL1 Child Bits

1 1 1 0 Virtualize APIC accesses
1 1 1 1 Enable EPT

1 1 1 2 Descriptor-table exiting

1 1 1 3 Enable RDTSCP

0 0 0 4 Virtualize x2APIC mode
1 1 1 5 Enable VPID

0 0 1 6 WBINVD exiting /|

1 1 1 7 Unrestricted guest

0 0 0 8 APIC-register virtualization
0 0 0 9 Virtual-interrupt delivery
0 0 0

0 0 0 11 RDRAND exiting

1 1 1 12 Enable INVPCID

0 0 0 13 Enable VM functions

0 0 0 14 VMCS shadowing

1 1 1 15 Enable ENCLS exiting

7/18

VTLO VTL1 Child Bits

0 0 0 16 RDSEED exiting

0 0 0 17 Enable PML

0 0 0 18 EPT-violation #VE

1 1 1 19 Conceal VMX from PT

1 1 1 20 Enable XSAVES/XRSTORS

0 0 0 21 PASID translation

1 0 0 22 Mode-based execute control for EPT /.|
0 0 0 23 Sub-page write permissions for EPT

0 0 0 24 Intel PT uses guest physical addresses
0 0 0 25 Use TSC scaling

0 0 0 26 Enable user wait and pause

0 0 0 27 Enable PCONFIG

0 0 0 28 Enable ENCLV exiting

0 0 0

0 0 0 30 VMM bus-lock detection

0 0 0 31 Instruction timeout

Primary VM-exit controls

For the child partition, “Load IA32_PAT” is enabled.

¥ Details
“1” means the feature is enabled.

VTLO VTL1 Child Bits

1 1 1
1 1 1
1 1 1 2 Save debug controls
1 1 1

8/18

VTLO VTL1 Child Bits

1 1 1

9 Host address-space size

0 0 0 12 Load IA32_PERF_GLOBAL_CTRL
1 1 1

1 1 1

1 1 1 15 Acknowledge interrupt on exit

1 1 1

1 1 1

0 0 0 18 Save IA32_PAT

0 0 1 19 Load IA32_PAT [\

0 0 0 20 Save IA32_EFER

0 0 0 21 Load IA32_EFER

0 0 0 22 Save VMX-preemption timer value
0 0 0 23 Clear IA32_BNDCFGS

1 1 1 24 Conceal VMX from PT

0 0 0 25 Clear IA32_RTIT_CTL

0 0 0 26 Clear IA32_LBR_CTL

0 0 0 27 Clear UINV

0 0 0 28 Load CET state

9/18

VILO VTL1 Child Bits

0 0 0 29 Load PKRS

0 0 0 30 Save IA32_PERF_GLOBAL_CTL
0 0 0 31 Activate secondary controls

VM-entry controls

For the child partition, “Load IA32_PAT” is enabled.

¥ Details

“1” means the feature is enabled.

VILO VTL1 Child Bits

1 1 1

1 1 1

1 1 1 2 Load debug controls

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 9 1A-32e mode guest

0 0 0 10 Entry to SMM

0 0 0 11 Deactivate dualmonitor treatment
1 1 1

0 0 0 13 Load IA32_PERF_GLOBAL_CTRL
0 0 1 14 Load IA32_PAT /|

0 0 0 15 Load IA32_EFER

0 0 0 16 Load IA32_BNDCFGS

10/18

VTLO VTL1

Child Bits

1

1

17 Conceal VMX from PT

0 0 0 18 Load IA32_RTIT_CTL

0 0 0 19 Load UINV

0 0 0 20 Load CET state

0 0 0 21 Load guest IA32_LBR_CTL
0 0 0 22 Load PKRS

ENCLS-exiting bitmap

For the child partition, all ENCLS leaf functions are intercepted.

¥ Details

“1” means the leaf function is intercepted.

VILO VTL1 Child Bits

0 0 1 ENCLS[ECREATE]
0 0 1 ENCLS[EADD]

1 1 1 ENCLSIEINIT]

0 0 1 ENCLS[EREMOVE]
0 0 1 ENCLS[EDBGRD]
0 0 1 ENCLS[EDBGWR]
0 0 1 ENCLS[EEXTEND]
0 0 1 ENCLS[ELDB]

0 0 1 ENCLS[ELDU]

0 0 1 ENCLS[EBLOCK]
0 0 1 ENCLS[EPA]

0 0 1 ENCLS[EWB]

0 0 1 ENCLS[ETRACK]
0 0 1 ENCLS[EAUG]

11/18

VILO VTL1 Child Bits

0 0 1 ENCLS[EMODPR]
0 0 1 ENCLS[EMODT]
0 0 1 ENCLS[ERDINFO]
0 0 1 ENCLS[ETRACKC]
0 0 1 ENCLS[ELDBC]
0 0 1 ENCLS[ELDUC]

Exception bitmap

There is no difference between the 3 configurations.

V¥ Details

“1” means the exception is intercepted.

VILO VTL1 Child Bits

0 0 0 Divide Error Exception

1 1 1 Debug Exception

1 1 1 NMI Interrupt

0 0 0 Breakpoint Exception

0 0 0 Overflow Exception

0 0 0 BOUND Range Exceeded Exception
0 0 0 Invalid Opcode Exception

0 0 0 Device Not Available Exception
0 0 0 Double Fault Exception

0 0 0 Coprocessor Segment Overrun
0 0 0 Invalid TSS Exception

0 0 0 Segment Not Present

0 0 0 Stack Fault Exception

0 0 0 General Protection Exception

12/18

VILO VTL1 Child Bits

0 0 0 Page-Fault Exception

0 0 0

0 0 0 x87 FPU Floating-Point Error
0 0 0 Alignment Check Exception

1 1 1 Machine-Check Exception

0 0 0 SIMD Floating-Point Exception
0 0 0 Virtualization Exception

0 0 0 Control Protection Exception

CRO guest/host mask

There is no difference between the 3 configurations.

¥ Details

“1” means access to the bit position is intercepted and shadowed.

VILO VTL1 Child Bits

1 1 1 0 Protection Enable

0 0 0 1 Monitor Coprocessor
0 0 0 2 Emulation

0 0 0 3 Task Switched

0 0 0 4 Extension Type

1 1 1 5 Numeric Error

1 1 1

1 1 1

1 1 1

13/18

VTLO VTL1 Child Bits

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 16 Write Protect
1 1 1
1 1 1 18 Alignment Mask
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 29 Not Write-through
1 1 1 30 Cache Disable
1 1 1 31 Paging
CR4 guest/host mask

For VTL 0, several bits are intercepted and shadowed.

¥ Details

“1” means access to the bit position is intercepted and shadowed.

VTILO VTL1 Child Bits

14/18

VILO VTL1 Child Bits

1 0 0 0 Virtual-8086 Mode Extensions /..

1 0 0 1 Protected-Mode Virtual Interrupts /.1

1 0 0 2 Time Stamp Disable /|

1 0 0 3 Debugging Extensions /|

1 1 1 4 Page Size Extensions

1 1 1 5 Physical Address Extension

1 1 1 6 Machine-Check Enable

0 0 0 7 Page Global Enable

0 0 0 8 Performance-Monitoring Counter Enable

1 0 0 9 Operating System Support for FXSAVE and FXRSTOR instructions /.
1 0 0 10 Operating System Support for Unmasked SIMD Floating-Point Exceptions /..

11 User-Mode Instruction Prevention

12 57-bit linear addresses

13 VMX-Enable Bit

14 SMX-Enable Bit

16 FSGSBASE-Enable Bit

17 PCID-Enable Bit

18 XSAVE and Processor Extended States-Enable Bit

19 Key-Locker-Enable Bit

20 SMEP-Enable Bit

21 SMAP-Enable Bit

22 Enable protection keys for user-mode pages

23 Control-flow Enforcement Technology

24 Enable protection keys for supervisor-mode pages

15/18

VTLO VTL1 Child Bits

1 1 1 25 User Interrupts Enable Bit

Call for actions

Besides the open questions | made above, there are opportunities to find new vulnerabilities in the Windows
hypervisor if you extend hvext.js for AMD platforms. | discovered two vulnerabilities specific to the Intel
platforms while writing the tool, so | would not be surprised if similar issues exist on AMD platforms.

Reference: steps to get them

1. Enable hypervisor debugging and get hvext.js working.

2. Reduce the number of logical processors to 1 and reboot. This makes VTL 0, 1 and guest transitions
tremendously clearer.

> bcdedit /set numproc 1

3. To break on VMCS switching, we need to set breakpoints on the all vMPTRLD instructions in the
hypervisor image. For this, get the range of hypervisor’s .text section first.

kd> 1m
start end module name
fffff863 87673000 fffff863 87a75000 hv (no symbols)

kd> ldh -s fffff863 87673000

SECTION HEADER #9
.text name
19COC4 virtual size
200000 virtual address
19D000 size of raw data

4. Then, search the vMPTRLD instructions in the range with the # command.

kd> # vmptrld fffff863 87673000+200000 L 19C0OC4

16/18

https://github.com/tandasat/hvext
https://github.com/tandasat/CVE-2023-36427
https://github.com/tandasat/CVE-2024-21305
https://tandasat.github.io/blog/windows/2023/03/21/setting-up-kdnet-over-usb-eem-for-bootloader-and-hyper-v-debugging.html

5. Finally, set a breakpoint for each discovered instruction.

Note that there were 41 instances of the vMPTRLD instructions in the version | tested, and Windbg could
set only up to 30 breakpoints. However, this was not a big issue as only 4 of them were used during the
regular operation. To figure out which instructions are used, you can trace execution of them instead of

breaking in each time with commands like this:

¥ Details

17/18

; Offsets are valid only for the version 10

bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp
bp

hv+0x20af68
hv+0x2123cf
hv+0x216c2e
hv+0x21a174
hv+0x22093b
hv+0x22b377
hv+0x22cilba
hv+0x22c6f4
hv+0x22cd17
hv+0x239401
hv+0x248112
hv+0x25589a
hv+0x2559ae
hv+0x33e1d3
hv+0x33e2f5
hv+0x33eadl
hv+0x340e8d
hv+0x340eed
hv+0x3410e2
hv+0x341a6e
hv+0x347146
hv+0x34960c
hv+0x34971f
hv+0x34985d
hv+0x349acd
hv+0x349c95
hv+0x34b8b8
hv+0x34b8f9
hv+0x34ba7f
hv+0x34baed
hv+0x34cf28
hv+0x34f3f4
hv+0x34f4e4
hv+0x34feae
hv+0x352070
hv+0x352100
hv+0x3521d9
hv+0x352b9d
hv+0x352bb0
hv+0x3541a5
hv+0x391b62

.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo
.echo

1 OI;
1 1';
1 2';
1 3'-

r
1 4!.

4
1 5!;
1 6'-
! 7l;
1 8'-

4
1 9!.

4
llel;
llll;
|12l;
|13|.

4
'14"';
l15l;
'16';
|17|;
'18';
llgl;
'20';
|21|;
l22l;
l23l;
l24l;
|25l.

4
|26|.

4
27",
|28|;
|29|;
|30|.

4
'31';
'32';
|33|;
|34|.

4
'35';
'36';
l37l;
'38';
l39l;
l40l;

dp
dp
dp
dp
dp
dp
dp
dp
dp
dp

rcx+188h
rcx+188h
rcx+188h
rcx+188h
rcx+188h
rcx+188h
rcx+188h
rcx+188h 11; gc"
rcx+188h 11; gc"
rsp+30h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rg8+118h 11; gc"
rsp+58h 11; gc"
rcx+118h 11; gc"
rbp+48h 11; gc"

11;
11;
11;
11;
11;
11;
11;

gc"
gc"
gc"
gc"
gc"
gc"
gc"

rcx+29A20h 11; gc"

rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rg8+188h 11; gc"
rcx+188h 11; gc"
rg8+118h 11; gc"
rsp+58h 11; gc"
rcx+188h 11; gc"
rsp+50h 11; gc"
rcx+188h 11; gc"
rax+188h 11; gc"
rax+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"
rdx+eBeh 11; gc"
rcx+188h 11; gc"
rcx+188h 11; gc"

.0.22621.2861

; used to switch VTL 0 and 1

; used to switch

guest and VTL O

; used only for the first launch

; used only during start up

18/18

