
1/3

Exploiting a vulnerable Minifilter Driver to create a process killer
antonioparata.blogspot.com/2024/02/exploiting-vulnerable-minifilter-driver.html

Bring Your Own Vulnerable Driver (BYOVD) is a technique that uses a vulnerable driver in order to achieve a
specific goal. BYOVD is often used by malware to terminate processes associated with security solutions
such as an EDR. There are many examples of open-source software that (ab)use a vulnerable driver for this
purpose. One the most used driver is the Process Explorer driver. In this case we cannot talk about a
vulnerability since it is a feature of the application to permit process termination from its UI.

BYOVD is gaining more and more attention since attackers understood that it's a better strategy to terminate
the EDR process instead than relying on obfuscation techniques in order to evade EDR detection.

In this blog post I'll analyze a signed driver that can be used to create a program able to terminate a specific
process from the kernel. The driver is quite old but neverthless usable. The driver hash is
023d722cbbdd04e3db77de7e6e3cfeabcef21ba5b2f04c3f3a33691801dd45eb (probmon.sys).

Exploiting a Minifilter Signed Driver

The mentioned driver is a signed minifilter driver part of a security solution. One of the imported function is
ZwTerminateProcess, so my goal is to check if it is possible to call this function on an arbitrary process.

The driver starts by calling the FltRegisterFilter function in order to register the filter. Next, a communication
port is created by calling FltCreateCommunicationPort. The call specifies the parameter
MessageNotifyCallback, implying that a user mode application can communicate with the minifilter by using
the FilterSendMessage function. This callback does not expose the access to the ZwTerminateProcess
function, but it is necessary in order to satisfy the needed preconditions.

After the creation of the communication port, the driver sets a process creation notification function by calling
the function PsSetCreateProcessNotifyRoutine. The specified callback checks that the third argument of the
callback, named Create, is false, if not, the function returns immediatly. This implies that only process
termination are monitored by the driver. Under specific conditions, the notification callback function will call
the ZwTerminateProcess function.

In order to terminate a process with the vulnerable driver, there are two preconditions that must be satisfied:

1. The handle of the process to terminate is read from a global variable. We have to set this variable,
otherwise when the driver tries to terminate a process a KeBugCheckEx will be called generating a
BSOD

2. The ZwTerminateProcess is called only if the value of the process ID calling into the minifilter is the
same of the one associated with a global variable.

https://antonioparata.blogspot.com/2024/02/exploiting-vulnerable-minifilter-driver.html

2/3

Set the target process handle

This requirement is satisfied by sending a message to the communication port by using the struct from
Figure 1.

#[repr(C)]

struct CommandSetPidToTerminate {

 command_type: u32,

 pid_to_kill: u32

}
Figure 1. Set Target Process Handle Message Structure

In this case the command_type parameter must assume value 3. This will cause the ZwOpenProcess to be
called by using the pid_to_kill parameter, and the result assigned to the above mentioned global variable
(let's call it process_handle_to_terminate).

Enable process termination

The second precondition involves a check on a global variable (let's call it it_s_a_me, you will understand
why I choose this name in a moment). The value of this variable must be the same of the process ID that is
exiting (remember that the callback is monitoring for process termination). This check is performed in the
PsSetCreateProcessNotifyRoutine notification callback function. As before, this can be achieved by using
the struct from Figure 2.

#[repr(C)]

struct CommandEnableTermination {

 command_type: u32,

 data_count: u32,

 my_pid: u32

}
Figure 2. Set Global Variable To Enable Process Termination

In this case the command_type parameter must assume value 1. The data_count is used to copy the data
that follow this parameter. In our case it is ok to set 1 as value (1 DWORD is copied) and set as value of the
field my_pid our PID. In this way, our PID is written to the it_s_a_me global variable, satisfied our second
precondition.

Triggering process termination

At this point we have set the handle of the process to terminate (variable process_handle_to_terminate) and
we can reach the ZwTerminateProcess function thanks to the variable it_s_a_me.

When our process will exit, the PsSetCreateProcessNotifyRoutine notification callback will be called, the PID
check will be satisfied by verifying that the variable it_s_a_me is equals to the process ID that is exiting,
triggering the ZwTerminateProcess on the process_handle_to_terminate process. All this means that when
our process killer program will exit, the target process will be killed :)

3/3

Source Code

Considering the plethora of such programs available on Github, releasing one more shouldn't be a huge
problem. You can find the source code using the analyzed driver in my Github account:

https://github.com/enkomio/s4killer

Be consciuos that the driver is registered by using the flag
FLTFL_REGISTRATION_DO_NOT_SUPPORT_SERVICE_STOP implying that the minifilter is not unloaded
in response to service stop requests. In addition, the code STATUS_FLT_DO_NOT_DETACH is returned
when you try to unload the driver with fltmc. In order to unload the driver you have to reboot your machine.

Conclusion

The goal of this blog post was to demonstrate how the malware use BYOVD technique in order to kill EDR
processes. I analyzed a previously unknow vulnerable driver (to the best of my knowledge of course)
demonstrating how a minifilter can also be abused for such purpose.

Bonus

I'm currently focused on BYOVD technique used by malware to kill processes, so I haven't searched for
more vulnerabilities in the driver. However, there is a nice buffer overflow in it but I'm unsure if it is exploitable
or not :)

https://github.com/enkomio/s4killer

