Bypassing EDRs With EDR-Preloading

malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html

Previously, | wrote an article detailing how system calls can be utilized to bypass user mode EDR hooks.
Now, | want to introduce an alternative technique, “EDR-Preloading”, which involves running malicious code
before the EDR’s DLL is loaded into the process, enabling us to prevent it from running at all. By neutralizing
the EDR module, we can freely call functions normally without having to worry about user mode hooks,
therefore do not need to rely on direct or indirect syscalls.

This technique makes use of some assumptions and flaws in the way EDRs load their user mode
component. The EDR need to inject its DLL into every process in order to hook user mode function, but run
the DLL too early and the process will crash, run it too late and the process could have already executed
malicious code. The sweet-spot most EDRs have gone with is starting their DLL as late in process
initialization as possible, whilst still being able to do everything they need before the process entrypoint is
called.

theoretically, all we need is to find a way to load code a little bit earlier in process initialization, then we can
preempt the EDR.

A quick overview of the Windows process loader

To understand when EDR DLLs can and can’t load, we need to understand a bit about process initialization.

Whenever a new process is created, the kernel maps the target executable’s image into memory along with
ntdll.dll. A single thread is then created, which will eventually serve as the entrypoint thread. At this time, the
process is just an empty shell (the PEB, TEB, and imports are all uninitialized). Before the process entrypoint
can be called, a fair bit of setup must be performed.

Whenever a new thread starts, its start address will be setto ntdll!LdrIinitializeThunk(), which is
responsible for calling ntd11!LdrpInitialize().

ntdll!LdrpInitialize() has two purposes:

1. Initialize the process (if it's not already initialized)
2. Initialize the thread

ntdll!LdrpInitialize() first checks the global variable ntd11l!LdrpProcessInitialized, which, if set to
FALSE, will resultin a call to ntd11!LdrpInitializeProcess() prior to thread initialization.

ntdll!LdrpInitializeProcess() does what it says on the tin. It'll set up the PEB, resolve the process
imports, and load any required DLLs.

1/10

https://malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html
https://malwaretech.com/2023/12/an-introduction-to-bypassing-user-mode-edr-hooks.html

Right at the end of ntd11l!LdrpInitialize() isacalltontdll!zwTestAlert(), which is the function used to
run all the Asynchronous Procedure Calls (APCs) in the current thread’s APC queue. EDR drivers that inject
code into the target process and call it via ntoskrnl!NtQueueApcThread() will see their code executed here.

Once the thread and process initialization is complete and ntd11!LdrpInitialize() returns,
ntdll!LdrInitializeThunk() will call ntd11l!zwContinue() which transfers execution back to the kernel.
The kernel will then set the thread instruction pointer to point to ntd11!Rt1UserThreadStart (), which will
call the executable entrypoint and the process’s life officially begin.

ntdillLdrinitializeThunk ntdlilLdrinitialize ntdlllLdrinitializeProcess

Setup PEB, load kernel32.dll &
—)» kernelbase.dll, setup imports and
load their associated dlls

) Call ntdll!Ldrplnitialize() which calls
ntdll!LdrplnitializeProcess()

v

Context Switch

Call ntdll!Ldrplnitialize()

After ntdll!LdrInitializeThunk() is complete it calls ZwContinue(), which causes the kernel switch the thread to point to
ntdll!RtlUserThreadStart() then resume execution

\

ntdll!RtlUserThreadStart Kernel32!BaseThreadinitThunk Process Entry Point

Call

kernel32!BaseThreadinitThunk() J» Call process entrypoint >

The fun begins

Process initialization flow chart

Older bypass techniques and drawbacks

Early APC queuing

Since APCs execute in First-in First-out order, it's sometimes possible to preempt certain EDRs by queueing
your own APC first. Many EDRs monitor for new processes by register a kernel callback using
ntoskrnl!PsSetLoadImageNotifyRoutine(). Whenever a new process starts, it automatically loads ntdll.dll
and kernel32.dll, so this serves as a good way to detect when new processes are being initialized. By
starting a process in a suspended state, you can queue an APC prior to initialization, therefore ending up at
the front of the queue. This technique is sometimes referred to as “Early Bird injection”.

The problem with queuing APCs is they have long been used for code injection, therefore
ntdl1l!NtQueueApcThread() is hooked and monitored by most EDRs. Queuing an APC into a suspended
process is highly suspicious and also well documented. It's also possible the EDR could hook your APC, re-

2/10

order the APC queue, or do any matter of other things to ensure its DLL runs first.

TLS Callback

TLS callbacks are executed towards the end of ntd11l!LdrpInitializeProcess(), but prior to
ntdll!zwTestAlert(), so, run before any APCs. In cases where an application uses TLS callback, some
EDRs may inject code to intercept the callback, or load the EDR DLL slightly earlier to compensate. Much to
my amazement, one EDRs | tested on was still bypassable using a TLS callback.

Finding something new

My goal was simple, but actually not simple at all, and also very time-consuming. | wanted to find a way to
execute code before the entrypoint, before TLS callbacks, before everything that could possibly interfere with
my code. This meant reverse engineering the entire process and DLL loader to look for anything | could use.
In the end, | found exactly what | needed.

Behold, the AppVerifier and ShimEnginer interfaces

Long ago, Microsoft created a tool called AppVerifier, for, well, app verification. It's designed to monitor
applications at runtime for bugs, compatibility issues, and so on. Much of AppVerifier’s functionality is
facilitated by the addition of a whole host of new callbacks inside ntdll.

While reverse engineering the App\Verifier layer, | actually found two sets of useful callback (AppVerifier and
ShimEngine).

Shim Engine related variables

3/10

AvrfpAPILockupCallbacksEnabled

AVrfpEnabled

RtlGuardAllowSuppressedCalls

AvrfAppVerifierMode

AvrfpAPILookupCallbackRoutine

App Verifier related variables

Two pointers that caught my eye were ntd11!g pfnSE GetProcAddressForcaller and
ntdl1l!AvrfpAPILookupCallbackRoutine, part of the ShimEngine and AppVerifier layers respectively. Both
pointers are called toward the end of ntd11!LdrGetProcedureAddressForcaller (), which is the function
used internally by GetProcAddress() to resolve the address of exported functions.

The code in LdrGetProcedureAddressForCaller() which implements the callbacks

These callbacks are perfect because LdrGetProcedureAddress() is guaranteed to be called by
LdrplnitializeProcess() when it loads kernelbase.dll. It's also called any time anything tries to resolve an
export with GetProcAddress() / LdrGetProcedureAddress(), including the EDR, which has a lot of fun
potential.

Even better, these pointers exist in a memory section that is writable prior to process initialization.

Deciding on a callback to hook

4/10

Whilst there were many good options, | decided to go with AvrfpAPILookupCallbackRoutine, which appears
to have been introduced in Windows 8.1. Whilst | could use the older callbacks for compatibility with earlier
Windows version, it'd be far more work and | wanted to keep my PoC simple.

The rest of the AppVerifer interface requires that you install a “Verifier Provider”, which requires a ton of
memory manipulation. The ShimEngine is slightly easier, but setting g_ShimsEnabled to TRUE enabled all
callbacks, not just the one we want, so we must register every callback or the application will crash.

The newer AvrfpAPILookupCallbackRoutine is really nice for two reasons:

1. It can be enabled independently of the AppVerifier interface by setting
ntdl1!AvrfpAPILookupCallbacksEnabled, so no AppVerifier provider needed.

2. Both ntd11!AvrfpAPILookupCallbacksEnabled and ntdlL!AvrfpAPILookupCallbackRoutine are
easily locatable in memory, especially on Windows 10.

Introducing EDR-Preloader

For demonstration purposes | decided to build a proof-of-concept that utilizes the
AvrfpAPILookupCallbackRoutine callback to load before the EDR DLL, then prevent it from loading.
Currently, I've only tested it on two major EDRs, but it should theoretically work against any EDR code
injection with a few tweaks.

You can find the full source code at the bottom of the article.

Step 1: locating the AppVerifier callback pointer

In order to set up a callback we need to set ntd11!AvrfpAPILookupCallbacksEnabled and
ntdl1l!AvrfpAPILookupCallbackRoutine. On Windows 10, both variables are located toward the beginning
of ntdI’'s .mrdata section, which is writable during process initialization.

ntdl1l!AvrfpAPILookupCallbacksEnabled is found direct after ntd11!LdrpMrdataBase (though sometimes
ntdll!LdrpKnownDllDirectoryHandle sits before it).

Both variables seem to always be exactly 8 bytes apart and in the same order. In an initialized process, the
layout should look something like this:

offset+0x00 - ntd11l!LdrpMrdataBase (set to base address of .mrdata section)
offset+0x08 - ntd11!LdrpKnownDllDirectoryHandle (setto a non-zero value)
offset+0x10 - ntd11!AvrfpAPILookupCallbacksEnabled (set to zero)
offset+0x18 - ntd11!AvrfpAPILookupCallbackRoutine (set to zero)

We can scan the .mrdata section in our own process for a pointer containing the section base address, then
the first NULL value after that will be AvrfpAPILookupCallbackRoutine.

5/10

ULONG_PTR find_avrfp_address(ULONG_PTR mrdata_base) {
ULONG_PTR address_ptr = mrdata_base + 0x280; //the pointer we want is 0x280+ bytes in
ULONG_PTR ldrp_mrdata_base = NULL;

for (int 1 = 0; i < 10; i++) {
if (*(ULONG_PTR*)address_ptr == mrdata_base) {
ldrp_mrdata_base = address_ptr;
break;

}
address_ptr += sizeof(LPVOID); // skip to the next pointer

address_ptr = ldrp_mrdata_base;

// AvrfpAPILookupCallbackRoutine should be the first NULL pointer after LdrpMrdataBase
for (int 1 = 0; i < 10; i++) {
if (*(ULONG_PTR*)address_ptr == NULL) {
return address_ptr;
}
address_ptr += sizeof(LPVOID); // skip to the next pointer

}
return NULL;

Step 2: setting up the callback to call our malicious code

The easiest way to set up the callback is just launch a second copy of our own process in a suspended
state. Since ntdll is at the same address in every process, we only need to locate the callback pointer in our
own process. Once our process is launched but in a suspended state, we can just use
WriteProcessMemory() to set the pointer.

We could also use this technique for process hollowing, shellcode injection, and more, since it allows us to
execute code without creating/hijacking threads, or queuing an APC. But for this PoC we’ll keep it simple.

note: since many ntdll pointers are encrypted, we can'’t just set the pointer to our target address. We have to
encrypt it first. Luckily, the key is the same value and stored at the same location across all processes.

LPVOID encode_system_ptr(LPVOID ptr) {
// get pointer cookie from SharedUserData!Cookie (0x330)
ULONG cookie = *(ULONG*)Ox7FFE0330;

// encrypt our pointer so it'll work when written to ntdll
return (LPVOID)_rotr64(cookie A (ULONGLONG)ptr, cookie & Ox3F);

}

Now we can just write the pointer and set AvrfpAPILookupCallbacksEnabled to 1 using
WriteProcessMemory():

6/10

// ntdll pointer are encoded using the system pointer cookie located at SharedUserData!Cookie
LPVOID callback_ptr = encode_system_ptr(&My_LdrGetProcedureAddressCallback);

// set ntdll!AvrfpAPILookupCallbacksEnabled to TRUE
uint8_t bool_true = 1;

// set ntdll!AvrfpAPILookupCallbackRoutine to our encoded callback address
if (!WriteProcessMemory(pi.hProcess, (LPVOID)(avrfp_address+8), &callback_ptr,
sizeof (ULONG_PTR), NULL)) {
printf("write 2 failed, error: %d\n", GetLastError());

}

if (!WriteProcessMemory(pi.hProcess, (LPVOID)avrfp_address, &bool_true, 1, NULL)) {
printf("write 3 failed, error: %d\n", GetLastError());

}

Step 3: executing the callback & neutralizing the EDR

Once we call ResumeThread() on the suspended process, our callback will be executed every time
LdrpGetProcedureAddress() is called, the first of which should be when LdrpInitializeProcess() loads
kernelbase.dll.

LdrpinitializeProcess calling LdrLoadDIl to load kernelbase.dll

A word of warning: kernelbase.dll is not fully loaded when our callback is fired, and the trigger happens
inside LdrLoadDll, thus the loader lock is still acquired. Kernelbase not yet being loaded means we’re limited
to calling only ntdll functions, and the loader lock prevents us from launching any threads or processes, as
well as loading DLLs.

Since we’'re highly restricted in what we can do, the simplest course of action is to just prevent the EDR DLL
from loading, then wait until the process is fully initialized before starting the malware party.

To ensure proper neutralization of the EDRs | tested on, | took a multi-pronged approach.

DLL Clobbering

7/10

This early in the process lifecycle only ntdll.dll, kernel32.dll, and kernelbase.dll should be loaded. Some
EDRs may pre-emptively map their DLL into memory, but wait until later to call the entrypoint. Whilst we
could probably unload these DLLs by calling ntd11!Ldrunloadbl1() once the loader lock is released (or do
it manually), a quick and dirty solution is to just clobber their entrypoints.

What we’ll do is iterate through the LDR module list and just replace the entrypoint address of any DLL that
shouldn’t be there.

DWORD EdrParadise() {
// we'll replaced the EDR entrypoint with this equally useful function
// todo: stop malware

return ERROR_TOO_MANY_SECRETS;

void DisablePreloadedEdrModules() {
PEB* peb = NtCurrentTeb()->ProcessEnvironmentBlock;
LIST_ENTRY* list_head = &peb->Ldr->InMemoryOrderModuleList;
LIST_ENTRY* list_entry = list_head->Flink->Flink;

while (list_entry != list_head) {
PLDR_DATA_TABLE_ENTRY2 module_entry = CONTAINING_RECORD(list_entry, LDR_DATA_TABLE_ENTRY2,
InMemoryOrderLinks);

// only the below DLLs should be loaded this early, anything else is probably a security
product

if (SafeRuntime::wstring_compare_i(module_entry->BaseDllName.Buffer, L"ntdll.d1ll") !'= 0 &&
SafeRuntime: :wstring_compare_i(module_entry->BaseDl1lName.Buffer, L"kernel32.d1l1l") != 0
&&
SafeRuntime: :wstring_compare_i(module_entry->BaseDl1Name.Buffer, L"kernelbase.dll") !=
0) {
module_entry->EntryPoint = &EdrParadise;
}
list_entry = list_entry->Flink;
}
}

Disabling the APC dispatcher

When APCs are queued to a thread they get processed by ntd11!KiUserApcDispatcher (), which runs the
APC then calls ntd11!NtContinue() to return the thread to its original context. By hooking
KiUserApcDispatcher and replacing it with our own function that just calls NtContinue() on a loop, no APCs
can ever be queued into our process (including those from the EDR’s kernel driver).

8/10

; simple APC dispatcher that does everything except dispatch APCs
KiUserApcDispatcher PROC
_loop:
call GetNtContinue
mov rcx, rsp
mov rdx, 1
call rax
jmp _loop
ret
KiUserApcDispatcher ENDP

Proxying LdrLoadDlI calls

By placing a hook on ntd11!LdrLoadbl1(), we can monitor which DLLs are being loaded. If any EDR tries
to load its DLL using LdrLoadDIl, we can unload or disable it. Ideally we probably want to hook
ntdll!LdrpLoadDll(), which is lower level and called directly by some EDRs, but for simplicity’s sake, we’ll
just use LdrLoadDIl.

// we can use this hook to prevent new modules from being loaded (though with both EDRs I tested, we
don't need to)
NTSTATUS WINAPI LdrLoadDllHook(PWSTR search_path, PULONG dll characteristics, UNICODE_STRING*
dll _name, PVOID* base_address) {
//todo: DLL create a list of DLLs to either be allowed or disallowed

return OriginalLdrLoadDll(search_path, dll _characteristics, dll_name, base_address);

Final Thoughts

While this PoC is only designed for Windows 10 64-bit, the technique should be viable on systems at least
as early as Windows 7 (I haven’t checked XP or Vista). However, finding the correct offsets is more difficult
below Windows 10. For a more robust method, | recommend using a disassembler. Either way, this was a
pretty fun weekend project and hopefully someone is able to learn something from it.

If you enjoy my work please follow me on LinkedIn and Mastodon for more.

You can find the full source code here: github.com/MalwareTech/EDR-Preloader

9/10

https://www.linkedin.com/in/malwaretech/
https://infosec.exchange/@malwaretech
https://github.com/MalwareTech/EDR-Preloader

B Ch\Users\Admin'Desktop \EDR-Preloader.exe - O *

freeze the :tem, run this

10/10

