
1/10

Christophe Nasarre November 12, 2023

How to dig into the CLR
chnasarre.medium.com/how-to-dig-into-the-clr-bd67d884f8da

Introduction

When I started to work on the second edition of Pro .NET Memory Management : For Better
Code, Performance, and Scalability by Konrad Kokosa, I already spent some time in the CLR
code for a couple of pull requests related to the garbage collector. However, updating the
book to cover 5 new versions of .NET requires looking at new APIs but also digging deep
inside the CLR (and especially the GC) hundreds of thousand lines of code!

The first step is to install Visual Studio 2022 Preview that allows you to compile and run
projects targeting .NET 8. Then, goto https://github.com/dotnet/runtime and git clone the tag
of the .NET 8 preview version you have installed.

https://chnasarre.medium.com/how-to-dig-into-the-clr-bd67d884f8da
https://github.com/dotnet/runtime
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

2/10

3/10

That way, you will be able to directly run the same version that you will debug.

And now, what are the next steps?

The goal of this post is to share with you the tips and tricks I used to navigate into the CLR
implementation so you could better understand how things are working.

From C# to C++

As a .NET developer, I’m used to the APIs provided by the Base Class Library built on top of
the CLR. Let’s take as an example the following code that is using the GC.AllocateArray
method that allows you to allocate a pinned in memory array and available since .NET 5.

using System;

 { { [] pinned = GC.AllocateArray<>(,); Console.WriteLine();
}}

When you Ctrl+click the method name (or use F12), thanks to Source Link integration, you
go to its implementation where you can even set breakpoint:

If you don’t use Visual Studio, you could open the generated assembly into a decompiler
such as ILSpy or DnSpy. The latter even allows you to set breakpoints and debug the
disassembly IL without any source.

https://learn.microsoft.com/en-us/dotnet/api/system.gc.allocatearray?WT.mc_id=DT-MVP-5003325
https://github.com/icsharpcode/ILSpy/releases
https://github.com/dnSpy/dnSpy/releases

4/10

In both cases, only the managed implementation will be available: you soon end up to an
“internal call” corresponding to a native function implemented by the CLR. The managed
methods are decorated with the MethodImplOptions.InternalCall attribute.

For the garbage collector code, you can look into the GC.CoreCLR.cs file where these
methods are defined. You can note some methods decorated with the DllImport attribute to
bind to native functions exported by a “QCall” library. There is an optimized path in P/Invoke
done by the JIT to transform these calls not like a usual LoadLibrary/GetProcAddress as you
could expect. Instead, they will be routed to the exported methods by coredll.dll and defined
in the s_QCall array in qcallentrypoints.cpp. But where to look further for the native
implementation?

Instead of searching among the thousands of files, focus on comutilnative.h that defines the
signature of most exported functions. The implementation of the exported native functions is
found in comutilnative.cpp. This is where you should start your journey in the native
implementation of the CLR. For the list of all functions called by the libraries in the runtime,
look at the ecalllist.h file (around gGCInterfaceFuncs and gGCSettingsFuncs specifically
for the GC).

Note that you might also find some implementations under the folder like in the file for .

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.methodimploptions?WT.mc_id=DT-MVP-5003325
https://github.com/dotnet/runtime/blob/main/src/coreclr/System.Private.CoreLib/src/System/GC.CoreCLR.cs
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?WT.mc_id=DT-MVP-5003325
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/qcallentrypoints.cpp
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/comutilnative.h
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/comutilnative.cpp
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/ecalllist.h

5/10

CLR Source code debugging

It is nice to know that the implementation of most CLR exported native functions used by the
BCL is in comutilnative.cpp. For the GC, the functions are either statics from the GCInterface
class or static functions prefixed by GCInterface_; I don’t know why all are not part of
GCInterface…

When you look at the GC-related methods implementation, a lot are calling methods from the
instance returned by GCHeapUtilities::GetGCHeap() that corresponds to the static
g_pGCHeap global variable. It is interesting to follow the threads of calls like that, but I have
to admit that, after a few hops, I’m starting to get lost. So, I’m drawing boxes for types on a
piece of paper and arrays from their fields to other types as boxes.

However, with a code base that big, I definitively prefer to set breakpoints and write a small
C# application to call the methods I’m interested in and see what data structures are used in
the different layers of implementation. Don’t be scared: WinDBG is not required to achieve
this goal. As this page explains, you need to type the following commands in a shell at the
root of the repo:

.\build.cmd -s clr -c Debug.\build.cmd clr.nativeprereqs -a x64 -c debug.\build.cmd -
msbuild

The last command generates a CoreCLR.sln solution file in
artifacts\obj\coreclr\windows.x64.Debug\ide) that you can open in Visual Studio 2022
Preview.

In VS, right-click the INSTALL project, select Properties and setup the Debugging properties

https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/comutilnative.cpp
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/comutilnative.h#L142
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/gcheaputilities.h#L70
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/gcheaputilities.h#L10
https://github.com/dotnet/runtime/blob/main/docs/workflow/debugging/coreclr/debugging-runtime.md

6/10

Here are the details of each property:

It could be interesting to set some environment variables such as DOTNET_gcServer to 1
for a GC Server configuration instead of workstation. In that case, click the <Edit..> choice in
the combo-box:

And update the textbox at the top:

7/10

The final step is to set this project as the startup project:

8/10

You are now able to set the breakpoint you want in the native code of the CLR and type
F5/Debug in Visual Studio to step into the code!

And what about the assembly code?

Some specific data structures, such as the NonGC Heap, are used by the JIT compiler when
generating the assembly code from the IL compiled from your C# code. It means that you
need to look at that JITted code to fully understand what is going on.

9/10

A first way to get it is to use https://sharplab.io/, type your C# code and select x64 for Core of
x86/x64 for Framework:

But as you can see from this screenshot, it is using the .NET 7 compiler. What if you would
like to see the .NET 8 compilation result just in case something changed?

The solution I’m using is to generate a memory dump with procdump -ma <pid> of a test
application. Before opening the dump in WinDBG, there is something you should be aware
of: with the tiered compilation, you will need to call a method several times before the final
optimized assembly code gets JITed. Or… decorate the method you are interested in with
the [MethodImpl(MethodImplOptions.AggressiveOptimization)] attribute to instruct the JIT to
directly generate the most optimized tier.

Once the dump loaded in WinDBG, the first step is to get the MethodTable pointer
corresponding to the method you are interested in. For that, use the name2ee SOS
command:

Click the link corresponding to MethodDesc to run the dumpmd SOS command:

https://sharplab.io/
https://learn.microsoft.com/en-us/dotnet/core/runtime-config/compilation?WT.mc_id=DT-MVP-5003325#tiered-compilation
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.methodimploptions?WT.mc_id=DT-MVP-5003325

10/10

The last step is to click the link corresponding to CodeAddr to run the U command and see
the JITted assembly code:

If you compare this code to get the “Hello, World!” string, with the one shown by sharplab,

 [] []

you might notice a tiny difference: there is one less indirection in .NET 8!

But this is another story that will be told in the second edition of the “Pro .NET Memory

Management: For Better Code, Performance, and Scalability” book ;^)

