
1/11

Yoann DEQUEKER October 2, 2023

Process Injection using NtSetInformationProcess
riskinsight-wavestone.com/en/2023/10/process-injection-using-ntsetinformationprocess

Process injection is a family of malware development techniques allowing an attacker to
execute a malicious payload into legitimate addressable memory space of a legitimate
process.

These techniques are interesting because the malicious payload is executed by a legitimate
process that could be less inspected by a security product such as an EDR.

However, in order to perform this injection, the attacker needs to use specific functions for
memory allocation, and use execution primitives to write and execute his payload in the
remote process. In standard process injection patterns, these functions are usually the
following Win32API: VirtuallAllocEx, WriteProcessMemory and CreateRemoteThread.

Figure 1: Standard process Injection pattern

Security products can use this the mandatory use of this type of functions to detect and
fight against process injection by monitoring these API calls. Therefore, in order to keep
this type of technique viable, attackers must find other ways to allocate, write and execute
memory in a remote process.

This post aims to show an alternate technique allowing execution at an arbitrary memory
address on a remote process that can be used to replace the standard CreateRemoteThread
call.

https://www.riskinsight-wavestone.com/en/2023/10/process-injection-using-ntsetinformationprocess/


2/11

Nirvana Debugger

Definition

In 2015, Alex Ionescu made a presentation about Esoteric Debugging Techniques.
One of the topics tackled is the Nirvana debugging technique. This method allows a
process to install a specific hook that will be called right after every syscall it performs.

When a process is performing a syscall, it forwards the execution flow to the kernel. Then,
once the kernel returns from the kernel procedure associated to the syscall, it usually
forwards back the execution flow to the calling process as shown in the following figure:

Figure 2: Standard process/kernel interaction

With the Nirvana debugging technique, it is possible to register a specific function
(executed in userland) that will be called right before the process gets back the execution
flow control from the kernel: the kernel will forward the execution flow to this hook instead
of the initial process as it is shown in the following figure:

https://github.com/ionescu007/HookingNirvana/blob/master/Esoteric%20Hooks.pdf


3/11

Figure 3: Execution flow is redirected

In this hook, all the information needed during a debugging session is available, including
which syscall has been executed, the address from which the syscall was called and the
syscall’s return code. This technique was first discussed in 2020 in the article Weaponizing
Mapping Injection with Instrumentation Callback for stealthier process injection by
@splinter_code.

Implementation

The WIN32API exposes the NtSetProcessInformation function that can be used to register
a Nirvana callback:

https://splintercod3.blogspot.com/p/weaponizing-mapping-injection-with.html
https://twitter.com/splinter_code


4/11

Figure 4: Basic Nirvana hook definition

The NtSetInformationProcess function takes the process handle (hProc) as a parameter,
which should make it possible to add a hook on a remote process.

On a remote process

The NtSetInformationProcess prototype shows that it can be used to alter a remote
process’s configuration.

However, looking at the function code in ntoskrnl.exe shows it is only possible to use the
function on a remote process when the SE_DEBUG privilege is enabled:

Figure 5: Need to activate SE_DEBUG



5/11

The SE_DEBUG privilege can be requested by principals allowed in the “Debug programs”
user right assignment. Additionally, the SeDebug privilege cannot be requested by
processes with an integrity level lower than “high”. On most systems, these requirements
translate to the need of running the malicious process with an account member of the
local “administrators” group, in elevated mode.

Process Injection With NtSetInformationProcess

As established in the previous sections, the NtSetInformationProcess WIN32API can be
used to register a hook on a remote process. So, it can be used to redirect a remote
process execution flow. However, the hook must be located inside the remote process
memory space.

Nirvana hook wrapper

The final goal is to inject a shellcode in the remote process that will be triggered as a Nirvana
hook and will call a CobaltStrike beacon.

The process can be split in two steps:

First the CobaltStrike beacon is written at the given address ${CSAddr} in the remote
process memory space.
Then the Nirvana Hook, that will perform a CALL ${CSAddr}, is written at another
address ${NirvanaAddr} in the remote process memory space.

A small kernel debugging on a process with a Nirvana hook installed shows that:

The kernel only performs a JMP on the hook address letting him redirect the execution
flow to the calling NT function. 


This part is an interesting lesson on Windows internals. As the kernel will be performing
a JMP/CALL on a userland function on behalf of the user mode to run the Nirvana hook,
it could be a way to bypass the Windows Control Flow Guard, because this check is
usually performed on userland with the LdrpValidateUserCallTarget function.


Here, the kernel had to reimplement this function under the name
MmValidateUserCallTarget to ensure the callback address is in the allowed function
range:



6/11

Figure 6: Control Flow Guard at kernel level

The calling function address is stored in the R10 registry.
The syscall’s return address is stored in the R11 registry.

So, the hook must jump on R10 once the CobaltStrike beacon has been executed to forward
back the execution flow to the calling NT function. A basic ASM code can be used:

push rbp

mov rbp, rsp


push rax

push rbx

push rcx

push r9

push rl0

push rll

movabs rax, ${CSAddr}


call rax

pop r11

pop r10

pop r9


pop rcx

pop rbx

pop rax

pop rbp

jmp r10

This shellcode seems ok, but in fact it will create an infinite loop as it will be called
everytime a syscall is performed. So, it can be modified in order to be executed only once.

For example, it could be possible to make the code self-modifying to change to replace the
PUSH RBP by a JMP R10 in order to break the loop:



7/11

push rbp
mov rbp, rsp

; This will modify the instruction push RBP into JMPR10

mov qword ptr[rip – 15] 0xE2FF41

push rax

push rbx

push rcx

push r9

push rl0

push rll

movabs rax, ${CSAddr}


call rax

pop r11

pop r10

pop r9


pop rcx

pop rbx

pop rax

pop rbp

jmp r10

So, when the hook has been executed once, it will just jump on R10 without re-executing the
beacon.

Wrapping it all together

Now the different shellcodes are written, it is possible to perform the injection:

Open the notepad.exe process with your process opening primitive
Allocate a RX buffer in the notepad.exe process for the Cobaltstrike beacon
Modify the Nirvana shellcode in order to call the Cobaltstrike beacon address in the
remote process
Allocate an RWX buffer in the notepad.exe process for the Nirvana Hook
Write both the shellcode and the Cobaltstrike beacon in their respective buffer
Add a new Nirvana Hook using the NtSetInformationProcess
Wait for the notepad to perform a syscall

The whole code is available on this Github repository:
https://github.com/OtterHacker/SetProcessInjection.

Drawbacks

The most important drawback is the fact that SE_DEBUG privilege is mandatory for the
injection. Therefore, this injection method can only be used during post-exploitation and
not during initial access.

https://github.com/OtterHacker/SetProcessInjection


8/11

The other problem that could be fixed, giving some time to it, is that the Nirvana shellcode
must be allocated as RWX in a remote buffer as it is a self-rewriting shellcode.

This can be solved by having the shellcode doing a call to VirtualProtect by itself or
finding another way to break the infinite hook loop (by re-calling NtSetInformationProcess
directly from the shellcode to remove the callback).

EDR inspection

The malware has been tested against Microsoft Defender For Endpoint, SentinelOne,
TrendMicro and Sophos. None of them raised any alerts regarding the execution
primitive.

However, it is not because no alerts are raised that no detection has occurred. For example,
if we look at the ntdll!SetInformationProcess on a process monitored by SentinelOne, it
is possible to see the following userland hook:

Figure 7: SentinelOne userland hook

Following the different JMP shows that the hook is located at 0x7ffd0160ab00. Looking at the
process loaded DLL, it is possible to retrieve the SentinelOne DLL’s base address:

Figure 7: SentinelOne DLL address

So, the hook’s code is stored in the InProcessClient64.dll at the 0x7ab00 offset.

Disassembling the related function in IDA shows the following function:



9/11

Figure 8: SetInformationProcess hook code

We see that the hook is copying the initial parameter in the SetInfoArgs structure, pack it in
the SentinelHookParams structure and call the ExecuteHook function. This function is a
succession of different calls leading to the following code:

Figure 9: SentinelOne test performed on the hook

This function shows that SentinelOne is performing tests on this hook and it is specifically
related to the ProcessInfomationClass used for the Nirvana Hook registering.

It is possible to look at the different checks that are performed to understand the detection
logic set up, but it is not the purpose of this post. However, some obvious checks can be
easily observed. The following code shows that the TTDINJECT.EXE and TTD.EXE
executables (related to Windows Time Travel Debugging) seem to be whitelisted:



10/11

Figure 10: TTDINJECT whitelisting

Likewise, it is possible to see additional tests performed when the SentinelOne’s
ProtectDeepHooking feature is activated:

Figure 11: Additional tests performed

The point here is that some EDR are still performing some detection through userland
hook to detect the use of this API. However, as every userland detection mechanism, it is
possible to bypass it using standard unhooking techniques and no kernel callback have
been found to detect and prevent the use of this API.

Conclusion

This conclusion is exactly the same as the one from my LeHack 2023 talk: instead of
spending months trying to find a way to bypass EDR and starting from scratch, it can
be interesting to just looking up and see if some built-in behavior could not be easily
hijacked to serve our purpose.

Security products cannot monitor all WIN32API and while behavioral analysis is kicking
in, it is still hard for them to determine if a behavior is legitimate or malicious when using
non-standard patterns.

So, be creative, Microsoft has created hundreds of functions, you will surely find one that
will satisfy your needs!



11/11

It seems that I am not the only one thinking like this, as a Defcon31 talk about token
duplication presented by Ron BEN YIZHAK also hijacks a non-standard WIN32API to
bypass standard detection by avoiding the classic WIN32API direct call.
Yoann DEQUEKER

Prev post
How to activate gamification for an impactful Cyber Month
Next post
Language as a sword: the risk of prompt injection on AI Generative






https://www.deepinstinct.com/blog/nofilter-abusing-windows-filtering-platform-for-privilege-escalation
https://www.riskinsight-wavestone.com/en/2023/09/how-to-activate-gamification-for-an-impactful-cyber-month/
https://www.riskinsight-wavestone.com/en/2023/10/language-as-a-sword-the-risk-of-prompt-injection-on-ai-generative/

