
1/17

Windows Authentication - Credential Providers - Part 1
dennisbabkin.com/blog

Intro

If you ever tried to write a credential provider in Windows you will understand my plight. The only relevant
official sample provided by Microsoft dates back to the days of Windows 8.1, and the documentation for
writing one is quite scarce, to say the least.

Note that credential providers have undergone quite a fast-pace evolution since the earlier days of
Windows. The technique that was previously used during the Windows XP days, known as GINA, or a
"Graphical Identification and Authentication dynamic-link library", is now largely obsolete and irrelevant.

In this series of blog posts I will try to dispel some myths about credential providers in Windows and hopefully
give the reader some insight on how they operate.

Some Theory

Before we dive into it, let's review what is a credential provider in Windows?

From a user's perspective, as well as the simplest way to describe it to pretty much anyone, is to say that a
credential provider is the window that you deal with when you need to log in to your user account in Windows.
One of these things:

https://dennisbabkin.com/blog/?i=AAA12300
https://learn.microsoft.com/en-us/samples/microsoft/windows-classic-samples/credential-provider/
https://learn.microsoft.com/en-us/windows/win32/secauthn/gina

2/17

Example of a credential provider on Windows 11.

From a technical standpoint, this is not exactly true. What you see in that screenshot is the logon process, that
I will call LogonUI.exe.

That thing might have its own internal name, but since Microsoft provides developers with just the bare
minimum of crumbs as credential providers are concerned and we have to dig around and research for
ourselves, I will take a liberty to give some things my own names. I hope that you don't mind?

A credential provider only tells the LogonUI.exe (in that case) which user interface (UI) controls to display.

So the LogonUI.exe renders all the buttons, the password field, a nicely translucent background, a user
picture and so forth for you. As a credential provider developer you have a very limited set of controls in that
regard. (Which, knowing how Windows OS is being abused by some unscrupulous developers, may be a
good thing.)

As the author of a credential provider you can pick from a short list of available UI elements that you would
want to display for your authentication method. After all, the job of a credential provider is to collect login
credentials from a user and to "provide" them (or pass them) to the system. And that is it.

Following Microsoft mantra, a credential provider should not attempt to authenticate the user. It should
only collect credentials and pass it to the system.

https://dbimgs.s3-us-west-2.amazonaws.com/prmr-n-wrtng-crdntl-prvdr-n-wndws-sub01.png

3/17

To do its job a credential provider resides in a dynamic-link library (DLL) that is structured to implement a
bunch of COM interfaces that will be called (or invoked) by LogonUI.exe, or by some other system process,
when the need arises.

Thus, to serve its purpose a credential provider DLL has to be loaded into a host process. I've already shown
one: LogonUI.exe. That is the process that is responsible for logging in users from a secure desktop. Most
people are familiar with it. But that is not the only host process that can load your credential provider. It may
be also loaded into the Windows Explorer process, or into CredentialUIBroker.exe, or consent.exe at a
certain condition during the UAC prompt or to retrieve a user account password, or if the user picks "Run as
different user" option. Alternatively, a credential provider may be loaded into your own process if you invoke
the CredUIPromptForWindowsCredentials API.

Although you can write a credential provider in a managed language like C#, I personally prefer to write
these early boot components in a lower-level language like C++ or even C. Doing so mitigates the
possible unpredictability of a missing component in a managed framework.

A true million dollar question with credential providers though is knowing which interface is used where, and
when will it be invoked? And this is what I will try to share in this and the following posts.

Lifespan of a Credential Provider

The rest of this blog post will be dedicated to the description of COM interfaces and their events, or callbacks,
that happen when a credential provider is loaded, used, and when it is later unloaded by the system.

In most cases you will not be loading a credential provider manually. All of the work of invoking it is done
by the OS components.

An important aspect for a developer is to realize that a credential provider can be loaded and used during
different stages of the operating system life cycle: from an early boot stage when no user is present at the
system and no desktop is available, to some random time during a remote desktop session.

Also, as I pointed out earlier, a credential provider is often loaded into a secure desktop, which limits the
number and type of system functions that can be called from it.

For instance, you cannot assume that a user desktop is available, and thus some of the user32.dll
APIs will not be able to function as you would expect. For instance, calls like SendMessage to windows in
the user desktop will not go through.

It is also prudent to understand that in most cases a credential provider should not be displaying its own UI.
With one exception to that rule that I will show-case later.

Finally, debugging a credential provider poses its own challenges. We will have to leave this subject for some
later blog post. For now, the developer of a credential provider should rely on logging instead.

Credential Provider Components

Before we go any further, we need to understand what are the components of a credential provider. Microsoft
has their own definition, which, to be honest, was very confusing for me. Thus, I will try to explain it as I think
is easier to understand. Or, at least, it was for me.

Factory

https://en.wikipedia.org/wiki/Component_Object_Model
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-account-control-switch-to-the-secure-desktop-when-prompting-for-elevation
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/User_Account_Control
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-creduipromptforwindowscredentialsw
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-account-control-switch-to-the-secure-desktop-when-prompting-for-elevation
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendmessage
https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#MyCredential_Advise

4/17

Factory is a COM class that is used by the outside callers to request various other COM components from
your credential provider. Which ones? We'll look at it later. For now, view it as a base for your credential
provider's logic that issues instances of its other interfaces.

As most COM components go, you would generally start writing a credential provider from its factory
class. It must be derived and implement the IClassFactory interface.

A factory class has to implement methods of the following interfaces:

C++[Copy]

class MyFactory : public IClassFactory

{

// IUnknown

virtual ULONG STDMETHODCALLTYPE AddRef();

virtual ULONG STDMETHODCALLTYPE Release();

IFACEMETHODIMP QueryInterface(__in REFIID riid, __deref_out void** ppv);

// IClassFactory

IFACEMETHODIMP CreateInstance(__in IUnknown* pUnkOuter, __in REFIID riid, __deref_out void**

ppv);

IFACEMETHODIMP LockServer(__in BOOL bLock);

};

Later on, all of the interfaces will have a similar backbone.

Filter

A filter is another COM class in the credential provider's implementation. It is used primarily to filter out other
credential providers in the system that you do not want to support.

A filter class must implement the ICredentialProviderFilter interface.

The way it works is that the host process sends your filter class two things:

1. The type of a login, or what Microsoft calls "usage scenario". I view it as "where was the credential
provider called from" parameter. It can be one of: login screen, unlocking workstation, changing user
password, CredUI-type authentication, and so forth.

https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#init
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nn-unknwn-iclassfactory
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialproviderfilter
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_usage_scenario
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-creduipromptforwindowscredentialsw

5/17

2. And the list of credential providers that are available in the system.
As an example, on the Windows 10 system, my installed filter class received the following list of
available credential providers. Note that each provider is represented by its own unique CLSID, or GUID:

CLSID Provide Name Module Bitmaps

{2135F72A-
90B5-4ED3-
A7F1-
8BB705AC276A}

PicturePasswordLogonProvider credprovslegacy.dll

{3DD6BEC0-
8193-4FFE-
AE25-
E08E39EA4063}

NPProvider credprovs.dll

{60B78E88-
EAD8-445C-
9CFD-
0B87F74EA6CD}

PasswordCredentialProvider credprovs.dll

{8AF662BF-
65A0-4D0A-
A540-
A338A999D36F}

FaceCredentialProvider FaceCredentialProvider.dll

{8FD7E19C-
3BF7-489B-
A72C-
846AB3678C96}

SmartcardCredentialProvider SmartcardCredentialProvider.dll

{BEC09223-
B018-416D-
A0AC-
523971B639F5}

WinBioCredentialProvider BioCredProv.dll

{C5D7540A-
CD51-453B-
B22B-
05305BA03F07}

CloudExperience_CredentialProvider cxcredprov.dll

{C885AA15-
1764-4293-
B82A-
0586ADD46B35}

IrisCredentialProvider FaceCredentialProvider.dll

{D6886603-
9D2F-4EB2-
B667-
1971041FA96B}

NgcPinProvider ngccredprov.dll

{F8A0B131-
5F68-486C-
8040-
7E8FC3C85BB6}

WLIDCredentialProvider wlidcredprov.dll

{5537E283-
B1E7-4EF8-
9C6E-
7AB0AFE5056D}

CRasProvider rasplap.dll

{855E2A67-
A476-4664-
8581-
01BEC33975BC}

MyProvider

https://en.wikipedia.org/wiki/Universally_unique_identifier

6/17

Hover the mouse over each bitmap to get its resource ID in its specific module.

My own credential provider, or "MyProvider", is also in the list. I gave it an arbitrarily random
CLSID of {855E2A67-A476-4664-8581-01BEC33975BC} that I generated with the "Create GUID"
tool in Visual Studio.

The job of your filter class is to say whether or not you want to deny this or that credential provider from being
shown to the user in this or that usage scenario. Or, in other words, it is the way for your credential provider to
say what it can or cannot do, in terms of which credentials it can collect from the user.

A filter class can only deny the existing credential providers that are given to it.

For instance, a credential provider may deny a PIN provider during a user account password-change usage
scenario.

And if the filter class allows a certain provider, it is later the job of a provider class to tell the hosting process
which UI elements it will need to collect the login credentials from the user for that specific login method.

So when a filter is invoked in your credential provider you can decide whether to block (or allow) any other
credential providers in the system (btw, including your own.) Your filter will receive a list of providers, like the
one that I showed above. Note though, that if you allow this or that credential provider, your own credential
provider must be capable of collecting required credentials from the user for that specific login method.

A filter class is also used to process incoming serialized data during a remote desktop connection.

An astute reader may have noticed that the filter class seems to have control over whether or not to
show all credential providers in the system. Or, it can disallow other credential providers. This is indeed
true. Two or more custom credential providers may not do well in one system.
As a workaround, an installer for your particular credential provider may check for the presence of other
filters in the following system registry key and either warn the user, or to refuse installation if any other
filters are detected:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential Provider
Filters

Note that there's always the GenericFilter present there with the {DDC0EED2-ADBE-40b6-A217-
EDE16A79A0DE} GUID.

A filter class has to implement methods of the following interfaces:

C++[Copy]

7/17

class MyFilter : public ICredentialProviderFilter

{

// IUnknown

virtual ULONG STDMETHODCALLTYPE AddRef();

virtual ULONG STDMETHODCALLTYPE Release();

virtual HRESULT STDMETHODCALLTYPE QueryInterface(__in REFIID riid, __in void** ppv);

// ICredentialProviderFilter

virtual HRESULT STDMETHODCALLTYPE Filter(

	 /* [in] */ CREDENTIAL_PROVIDER_USAGE_SCENARIO cpus,

	 /* [in] */ DWORD dwFlags,

	 /* [annotation][size_is][in] */

	 _In_reads_(cProviders) GUID* rgclsidProviders,

	 /* [annotation][size_is][out][in] */

	 _Inout_updates_(cProviders) BOOL* rgbAllow,

	 /* [in] */ DWORD cProviders);

virtual HRESULT STDMETHODCALLTYPE UpdateRemoteCredential(

	 /* [annotation][in] */

	 In const CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcsIn,

	 /* [annotation][out] */

	 Out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcsOut);

};

The UpdateRemoteCredential callback is used to de-serialize incoming credentials during a remote desktop
connection.

Provider

In the parlance of a credential provider project, a somewhat confusingly named "provider" class, is a COM
interface that implements the logic for deciding which user interface elements will be required for a specific
login method.

There could be multiple providers, each for its own login method. (I showed the list of possible login methods
when I was describing the filter class.) For instance, it could be a provider for a password login, or for a PIN
login, and so forth.

A version 2 (or V2) of the provider class has to be derived from the ICredentialProvider and from the
ICredentialProviderSetUserArray interfaces. Additionally, the credential class must be derived from
ICredentialProviderCredential2, or later interface.
While an older provider, version 1 (or V1, V1PasswordCredentialProvider) has to be derived only from
ICredentialProvider.

You can pretty much safely ignore V1 provider if you want to develop a credential provider for Windows
10 and later OS.

From a user's perspective they can switch between different login methods (and thus between provider
classes that are used in your credential provider) using the "Sign-in options" control in the LogonUI:

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-updateremotecredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovider
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidersetuserarray

8/17

"Sign-in options" in Windows 11.

In the screenshot above, you can see the "picture password", "PIN" and a "regular password" login methods,
available to the user. Each of those come with their own provider classes.

Although there's no documented way to know which provider class is currently active, or is interacting
with the user in the credential provider, you can use a hack to determine that. A credential class (that I
will describe below) has two methods: SetSelected and SetDeselected that are invoked when a certain
credential is activated. Thus, if you associate each credential class with a provider class that created it,
you will know which provider class is currently active by responding to the two callbacks that I named
above.

A provider class can be also used to request methods of communication with the host process, such as
LogonUI and others, and to request other callbacks using the ICredentialProviderEvents interface in its
Advise method. A provider class is also used to obtain basic information needed for the credential provider,
such as the list of available user accounts via the ICredentialProviderSetUserArray interface; or to receive
various other notifications via the undocumented ICredentialProviderWithDisplayState interface. (We'll
get back to it later.)

A provider class (version 2) has to implement methods of the following interfaces:

C++[Copy]

https://dbimgs.s3-us-west-2.amazonaws.com/prmr-n-wrtng-crdntl-prvdr-n-wndws-sub02.png
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setselected
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setdeselected
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialproviderevents
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-advise
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidersetuserarray
https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#MyProvider_SetDisplayState

9/17

class MyProvider : public ICredentialProvider,

ICredentialProviderSetUserArray

{

//

// IUnknown

virtual ULONG STDMETHODCALLTYPE AddRef();

virtual ULONG STDMETHODCALLTYPE Release();

virtual HRESULT STDMETHODCALLTYPE QueryInterface(__in REFIID riid, __in void** ppv);

//

// ICredentialProvider

virtual HRESULT STDMETHODCALLTYPE SetUsageScenario(__in CREDENTIAL_PROVIDER_USAGE_SCENARIO

cpus, __in DWORD dwFlags);

virtual HRESULT STDMETHODCALLTYPE SetSerialization(__in const

CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs);

virtual HRESULT STDMETHODCALLTYPE Advise(__in ICredentialProviderEvents* pcpe, __in UINT_PTR
upAdviseContext);

virtual HRESULT STDMETHODCALLTYPE UnAdvise();

virtual HRESULT STDMETHODCALLTYPE GetFieldDescriptorCount(__out DWORD* pdwCount);

virtual HRESULT STDMETHODCALLTYPE GetFieldDescriptorAt(__in DWORD dwIndex, __deref_out

CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR** ppcpfd);

virtual HRESULT STDMETHODCALLTYPE GetCredentialCount(__out DWORD* pdwCount,

	 __out_range(< , *pdwCount) DWORD* pdwDefault,

	 __out BOOL* pbAutoLogonWithDefault);

virtual HRESULT STDMETHODCALLTYPE GetCredentialAt(__in DWORD dwIndex,

	 __deref_out ICredentialProviderCredential** ppcpc);

//

// ICredentialProviderSetUserArray

virtual HRESULT STDMETHODCALLTYPE SetUserArray(

	 /* [annotation][in] */

	 In ICredentialProviderUserArray* users);

};

If you're writing a credential provider for versions of Windows prior to Windows 8, you may not use
ICredentialProviderSetUserArray and will have to retrieve all available user accounts manually.

Alternatively, if you want additional functionality for your provider class you may also derive it from
ICredentialProviderWithDisplayState and IAutoLogonProvider interfaces, to gain access to the following
undocumented methods:

C++[Copy]

//

// ICredentialProviderWithDisplayState

virtual HRESULT STDMETHODCALLTYPE SetDisplayState(__in

CREDENTIAL_PROVIDER_DISPLAY_STATE_FLAGS Flags);

//

// IAutoLogonProvider

virtual HRESULT STDMETHODCALLTYPE SetAutoLogonManager(IAutoLogonManager* pAutoLogonManager);

The declarations for these undocumented interfaces and flags are:

C++[Copy]

10/17

enum CREDENTIAL_PROVIDER_DISPLAY_STATE_FLAGS

{

CPDSF_NONE = 0x00000000, //Default initialization value.

CPDSF_AWAKE = 0x00000001, //Is set when display is on (can be used for power-

saving.)

CPDSF_UNKNOWN_1 = 0x00000002, //Transitive flag. It is mostly absent. It only

appears before/after CPDSF_AWAKE changes.

CPDSF_CURTAIN = 0x00000004, //Is set when the "curtain" is pulled down, or

obscures the tiles.

CPDSF_CURTAIN_MOVING = 0x00000008, //Is set when the "curtain" is moving. It appears

when the "curtain" is being pulled.

CPDSF_STATION_LOCKED = 0x00000040, //Is set when the workstation is locked.

CPDSF_PROVIDER_VISIBLE = 0x00000080, //Is set when provider screen is active/visible.

CPDSF_NO_LOGGED_USERS = 0x00000400, //Is set when there is no logged in users.

CPDSF_UNKNOWN_2 = 0x00000800, //Some unknown flag that is used by the PIN (NGC)

provider.

CPDSF_SHUTDOWN_STARTED = 0x00001000, //Is set when reboot or shutdown had started.

CPDSF_ACTIVE = 0x00010000, //Is set to indicate display activity. Is reset after

some time when UI is idle.

CPDSF_TBAL_LOGON = 0x00080000 //Is set for the trusted boot auto-logon (TBAL) boot.

};

// A "curtain" is when the LogonUI.exe hides all credential tiles after a period of inactivity,

// or right after it is initially shown. This appears to be a security feature.

//

MIDL_INTERFACE("A09BCC29-D779-4513-BB59-B4DB5D82D2B6")

ICredentialProviderWithDisplayState : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE SetDisplayState(__in
CREDENTIAL_PROVIDER_DISPLAY_STATE_FLAGS Flags) = 0;

};

MIDL_INTERFACE("8A4E89FE-C09D-475E-88CB-F8F11E047C50")

IAutoLogonProvider : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE SetAutoLogonManager(IAutoLogonManager *) = 0;

};

I'll explain what SetDisplayState does in a later post. But it's basically used to receive notifications about
various states of the OS, and of the credential provider itself.

Credentials, Tiles & UI Fields

The best way to describe credentials is to show them visibly in a credential provider:

https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#MyProvider_SetDisplayState

11/17

Five credential tiles in Windows 11.

Credentials are also called "tiles" in the Microsoft documentation. My guess, the term "tile" is used when
referring to the visual representation of a credential.

Like before, a credential is a COM class that implements a visual representation of a user account, or of some
other login entity, depending on your credential provider's purpose. But, in most cases, a credential class
represents a UI object that a user can click to log in with.

A credential can have an arbitrary number of fields, or UI elements, that can be displayed when a tile for a
credential is selected in the UI of the credential provider. Those UI fields is what a user interacts with by
providing their login information.

The screenshot below demonstrates the "User A" tile that is currently selected in a credential provider. That
tile respectively has the following UI fields enabled (or visible): 1. "Password field", 2. "Submit button", 3.
"Password hint" text and 4. "Reset password link":

https://dbimgs.s3-us-west-2.amazonaws.com/prmr-n-wrtng-crdntl-prvdr-n-wndws-sub03.png

12/17

Selected "User A" tile with its four visible UI fields in Windows 11.

A credential class receives multiple callbacks from the host process to decide which fields to show (or to hide).
It also gets notified when a certain tile is selected or deselected. I'll explain more in part 2.

A credential class must be derived from and implement ICredentialProviderCredential interface (or,
it's later cousins, that have a consecutive number at the end), and optionally
IConnectableCredentialProviderCredential, ICredentialProviderCredentialWithFieldOptions,
undocumented ICredentialProviderCredentialTileDataInfo and so on, to support newer features of
the credential providers.

All credentials must be created from within the GetCredentialCount and GetCredentialAt callbacks of the
provider class. The first call must return the number of credentials that your credential provider wants to show.
This is basically dictated by the number of user accounts that are supplied for your provider class in the
SetUserArray callback. Then each invocation of the GetCredentialAt callback for your provider class (for the
number of desired credentials) must create and return an instance of your credential class.

The same rule applies to the UI fields that are shown when a tile is selected. You first specify how may fields a
provider will need in the GetFieldDescriptorCount callback. And then describe each field in the following
GetFieldDescriptorAt callbacks. Each time the latter callback is invoked, you need to specify what each
field is: whether it's a text field, a password field, an image, a submit button, and so forth.

https://dbimgs.s3-us-west-2.amazonaws.com/prmr-n-wrtng-crdntl-prvdr-n-wndws-sub04.png
https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#usr_inter
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-iconnectablecredentialprovidercredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialwithfieldoptions
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialcount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidersetuserarray-setuserarray
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getfielddescriptorcount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getfielddescriptorat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ns-credentialprovider-credential_provider_field_descriptor

13/17

Once UI fields and credentials are created they cannot be destroyed or added for the lifetime of the provider
class. The way to address this limitation is by letting you show or hide UI fields, as well as to change their
state, or text displayed in them. This is accomplished by responding to various callbacks for the credential
class, such as: GetFieldState, GetStringValue, GetBitmapValue, GetCheckboxValue,
GetSubmitButtonValue, GetComboBoxValueCount, GetComboBoxValueAt; or by calling the following methods:
SetStringValue, SetCheckboxValue, SetComboBoxSelectedValue, and so forth.

The UI fields cannot be arbitrarily positioned on the screen, resized, or in any way styled. The host process
that calls your credential provider decides all those things. The only control that the author of a credential
provider has is the sequence at which UI elements, or fields, will appear in the host process.

Newer undocumented class, like ICredentialProviderCredentialTileDataInfo has methods such as
SetTileVisibility and GetTileVisibility for changing tile visibility. As well as the ICredTileData
class that has the IsTileVisible method, and the ICredentialProviderCredentialTileDataEvents
class that has RequestVisibilityChange. But Microsoft, in their usual fashion, forgot to document
those.

Finally, the credential class is the one that gets notified when a user clicks "Submit" button to begin the login
process via the GetSerialization callback. In response to that callback the credential class must collect all
user-provided credentials in the UI, serialize them and feed the resulting binary data back to the host process.

Note that Microsoft admonishes developers that the credential class should not authenticate a user. Its
job is only to collect user login credentials and to pass them to the host process.
In reality though, this is not always possible. Especially if you're writing a credential provider wrapper to
implement a form of an MFA login.

Next, after your credential class passes serialized credentials to the host process, the latter one internally
invokes some of the LSASS functions to perform the actual user authentication, usually via a call to the
LsaLogonUser API.

The result of the login is reported back to the credential class via the eponymous ReportResult method. Your
credential class should respond to it by setting an appropriate user message, if the login fails.

Note that ReportResult callback is not called for the CredUI-type scenario.

One important caveat to remember about the ReportResult callback is that if the login was successful (or if its
ntsStatus parameter is set to S_OK), your credential provider will begin unloading immediately after you return
from ReportResult, regardless of its return status code.

I would definitely consider the latter condition a deficiency in the Microsoft's implementation of the
credential provider interface. Lacking the ability to halt a successful login, any implementations of the
secondary (or MFA) logins become impossible without some sort of a hack.
Because of that, developers usually resort to invoking the LsaLogonUser function from within their
credential provider before passing a serialized user input to the host process in the GetSerialization
callback.

Microsoft could've prevented such behavior by providing a mechanism to cancel a successful login from
within the ReportResult callback.

A credential class has to implement methods of the following interfaces:

C++[Copy]

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getfieldstate
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getstringvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getbitmapvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getsubmitbuttonvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvaluecount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvalueat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setstringvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcomboboxselectedvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getserialization
https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows#wrapping
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-reportresult
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-creduipromptforwindowscredentialsw
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-reportresult
https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getserialization

14/17

class MyCredential : public ICredentialProviderCredential4

{

 //

 // IUnknown

 virtual ULONG STDMETHODCALLTYPE AddRef();

 virtual ULONG STDMETHODCALLTYPE Release();

virtual HRESULT STDMETHODCALLTYPE QueryInterface(__in REFIID riid, __in void** ppv);

 //

 // ICredentialProviderCredential

 virtual HRESULT STDMETHODCALLTYPE Advise(__in ICredentialProviderCredentialEvents* pcpce);

 virtual HRESULT STDMETHODCALLTYPE UnAdvise();

 virtual HRESULT STDMETHODCALLTYPE SetSelected(__out BOOL* pbAutoLogon);

 virtual HRESULT STDMETHODCALLTYPE SetDeselected();

 virtual HRESULT STDMETHODCALLTYPE GetFieldState(__in DWORD dwFieldID,

 __out CREDENTIAL_PROVIDER_FIELD_STATE* pcpfs,

 __out CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE* pcpfis);

 virtual HRESULT STDMETHODCALLTYPE GetStringValue(__in DWORD dwFieldID, __deref_out PWSTR* ppwsz);

 virtual HRESULT STDMETHODCALLTYPE GetBitmapValue(__in DWORD dwFieldID, __out HBITMAP* phbmp);

 virtual HRESULT STDMETHODCALLTYPE GetCheckboxValue(__in DWORD dwFieldID, __out BOOL* pbChecked,
__deref_out PWSTR* ppwszLabel);

 virtual HRESULT STDMETHODCALLTYPE GetComboBoxValueCount(__in DWORD dwFieldID, __out DWORD*
pcItems, __out DWORD* pdwSelectedItem);

 virtual HRESULT STDMETHODCALLTYPE GetComboBoxValueAt(__in DWORD dwFieldID, __in DWORD dwItem,
__deref_out PWSTR* ppwszItem);

 virtual HRESULT STDMETHODCALLTYPE GetSubmitButtonValue(__in DWORD dwFieldID, __out DWORD*
pdwAdjacentTo);

 virtual HRESULT STDMETHODCALLTYPE SetStringValue(__in DWORD dwFieldID, __in PCWSTR pwz);

 virtual HRESULT STDMETHODCALLTYPE SetCheckboxValue(__in DWORD dwFieldID, __in BOOL bChecked);

 virtual HRESULT STDMETHODCALLTYPE SetComboBoxSelectedValue(__in DWORD dwFieldID, __in DWORD
dwSelectedItem);

 virtual HRESULT STDMETHODCALLTYPE CommandLinkClicked(__in DWORD dwFieldID);

 virtual HRESULT STDMETHODCALLTYPE GetSerialization(__out
CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

 __out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

 __deref_out_opt PWSTR* ppwszOptionalStatusText,
 __out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon);

 virtual HRESULT STDMETHODCALLTYPE ReportResult(__in NTSTATUS ntsStatus,

 __in NTSTATUS ntsSubstatus,

 __deref_out_opt PWSTR* ppwszOptionalStatusText,
 __out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon);

 //

 // ICredentialProviderCredential2

 virtual HRESULT STDMETHODCALLTYPE GetUserSid(

 /* [annotation][string][out] */

 _Outptr_result_maybenull_ LPWSTR* sid);

 //

 // ICredentialProviderCredential3

 virtual HRESULT STDMETHODCALLTYPE GetBitmapBufferValue(__in DWORD fieldID,

 __out DWORD* pImageBufferSize, __out BYTE** ppImageBuffer);

 //

 // ICredentialProviderCredential4

15/17

 virtual HRESULT STDMETHODCALLTYPE GetTextFieldMaxLength(__in DWORD dwFieldID, __out DWORD*
pMaxLength);

};

If you need to support Windows 10 and later OS, I would use ICredentialProviderCredential4 instead of
the older ICredentialProviderCredential interface.

Additionally, you may also derive your credential class from and implement the
IConnectableCredentialProviderCredential, ICredentialProviderCredentialWithFieldOptions and
ICredentialProviderCredentialTileDataInfo to gain access to the following methods:

C++[Copy]

 //

 // IConnectableCredentialProviderCredential

 virtual HRESULT STDMETHODCALLTYPE Connect(_In_ IQueryContinueWithStatus* pqcws);

 virtual HRESULT STDMETHODCALLTYPE Disconnect();

 //

 // ICredentialProviderCredentialWithFieldOptions

 virtual HRESULT STDMETHODCALLTYPE GetFieldOptions(

 /* [in] */ DWORD fieldID,

 /* [annotation][out] */

 Out CREDENTIAL_PROVIDER_CREDENTIAL_FIELD_OPTIONS* options);

 //

 // ICredentialProviderCredentialTileDataInfo

 virtual HRESULT STDMETHODCALLTYPE SetTileVisibility(__in BOOL bVisibile);

 virtual HRESULT STDMETHODCALLTYPE GetTileVisibility(__out PBOOL pbVisibile);

The declarations for undocumented interfaces are:

C++[Copy]

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-iconnectablecredentialprovidercredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialwithfieldoptions

16/17

MIDL_INTERFACE("64a5010e-4363-41f8-9738-19045c20dabc")

ICredentialProviderCredential3 : ICredentialProviderCredential2

{

virtual HRESULT STDMETHODCALLTYPE GetBitmapBufferValue(__in DWORD dwFieldID,

	 __out DWORD * pImageBufferSize, __out BYTE * *ppImageBuffer) = 0;

};

MIDL_INTERFACE("4a54a3b6-a8d3-46a8-9080-811ba8ccb07d")

ICredentialProviderCredential4 : ICredentialProviderCredential3

{

virtual HRESULT STDMETHODCALLTYPE GetTextFieldMaxLength(__in DWORD dwFieldID, __out DWORD *
pMaxLength) = 0;

};

MIDL_INTERFACE("1ecf61d8-745e-4484-bcc7-182cea64c787")

ICredentialProviderCredential5 : ICredentialProviderCredential4

{

virtual HRESULT STDMETHODCALLTYPE GetAccessibilityTextForField(_In_ DWORD dwFieldID, _Out_
PWSTR* ppszText) = 0;

virtual HRESULT STDMETHODCALLTYPE GetIsAccessibilityViewRawForField(_In_ DWORD dwFieldID,
Out BOOL* pbRaw) = 0;

};

MIDL_INTERFACE("F6247CF9-061D-46E7-AAA7-0FDE071A5C1A")

ICredentialProviderCredentialTileDataInfo : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE SetTileVisibility(__in BOOL bVisibile) = 0;

virtual HRESULT STDMETHODCALLTYPE GetTileVisibility(__out PBOOL pbVisibile) = 0;

};

Note that the IConnectableCredentialProviderCredential interface is especially useful if you want to have
access to the credential provider's UI during the login process, say if such process may take a longer time to
complete. (One example would be the use of a companion device, such as a smartphone, for a form of the
MFA login.)

The Connect method is invoked before GetSerialization callback, so you can perform all lengthy login and
serialization there and pass the result into the GetSerialization callback to return to the host process. The
IConnectableCredentialProviderCredential interface provides access to the status text message that is
displayed to the user, as well as to the "Cancel" button that can be used to cancel a lengthy login process:

https://en.wikipedia.org/wiki/Multi-factor_authentication
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-iconnectablecredentialprovidercredential-connect
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getserialization

17/17

Example of the Connect method implementation in Windows 11.

The IConnectableCredentialProviderCredential interface is used by the Windows itself for some
slower pre-logon PLAP providers, such as 802.1x.

Conclusion

In the next part of this mini-series on credential providers lets review a sequence of callbacks that a credential
provider receives to better understand what happens under the hood, as well as to learn how one can write a
wrapper to an existing (system) credential provider to expand its functionality.

https://dbimgs.s3-us-west-2.amazonaws.com/prmr-n-wrtng-crdntl-prvdr-n-wndws-sub05.png
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication

