
1/9

Escalating Privileges via Third-Party Windows Installers
mandiant.com/resources/blog/privileges-third-party-windows-installers

Picture this: you've finally made it past the perimeter of a highly secured organization. You're
feeling pretty pleased with yourself, until you realize you only have Active Directory privileges
of a newly hired intern and the thrill trickles away. However, with some crafty tricks and a bit
of luck, you just might be able to climb the corporate ladder and get promoted to SYSTEM.
Welcome to the high-stakes game of privilege escalation!

For red teamers, elevation of privilege attacks come in two forms: domain and local privilege
escalation. Domain privilege escalation attacks focus on exploitation of Active Directory or
Cloud misconfigurations and vulnerabilities. Such attacks include Kerberoasting, file share
enumeration, and the notorious Zerologon (CVE-2020-1472) vulnerability. Given the
prevalence of Active Directory misconfigurations in modern networks, domain privilege
escalation attacks are among the first things red teamers look for after obtaining a foothold in
an internal network. But what happens when traditional domain escalations fail? As red
teamers, often the only way forward is to elevate locally, and sometimes that may require
taking a couple steps back and researching for these escalation vulnerabilities.

Local privilege escalation attacks focus on elevating a standard user’s privileges on a system
to local administrator privileges. Such attacks may include exploitation of insecure service
permissions or insecure file permissions. Unlike domain privilege escalation attacks, many
red teamers overlook local privilege escalation attacks. This is because domain privilege
escalation paths are usually more fruitful and easier to take advantage of. However,
successful exploitation on a local system could segue into more significant attacks at a
domain level. This has been demonstrated with research on Active Directory Certificate
Services (AD CS) misconfigurations and credential recovery of Microsoft’s System Center
Configuration Manager (SCCM) network access account (NAA). After all, this is the Internet,
and everything is connected.

In this blog post, we will share how Mandiant’s red team researches and exploits zero-day
vulnerabilities in third-party Windows Installers, what software developers should do to
reduce risk of exploitation, and introduce a new tool to simplify enumeration of cached
Microsoft Software Installer (MSI) files: msi_search.

Microsoft Software Installer Background

MSI files are database files that contain data and instructions for installing and uninstalling
software on Windows operating systems. Organizations commonly use MSI files for their
standardized format, which makes it easy to manage the installation, maintenance, and
removal of software. MSI files also provide flexibility to software developers by allowing them

https://www.mandiant.com/resources/blog/privileges-third-party-windows-installers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1472
https://posts.specterops.io/certified-pre-owned-d95910965cd2
https://posts.specterops.io/the-phantom-credentials-of-sccm-why-the-naa-wont-die-332ac7aa1ab9
https://github.com/mandiant/msi-search

2/9

to execute additional code during installation, removal, or repairs through Custom Actions.
These actions enable developers to customize the installation process and perform specific
tasks as needed.

When installing software with MSI files, Windows caches them in the C:\Windows\Installer
folder using randomized filenames consisting of alphanumeric characters followed by the
".msi" extension. This allows standard users to access and use the "repair" feature, which is
intended to address various issues like missing files, broken shortcuts, incorrect registry
entries, and other software malfunctions. During MSI repairs, several operations, such as file
creation or execution, may be triggered from a NT AUTHORITY\SYSTEM context, even if
initiated by a standard user.

Potential Abuses

The ability to initiate an operation from a NT AUTHORITY\SYSTEM context can present potential
security risks if not properly managed. For instance, misconfigured Custom Actions running
as NT AUTHORITY\SYSTEM can be exploited by attackers to execute local privilege escalation
attacks. One particular misconfiguration involves performing file operations in a folder where
standard users have write privileges. This allows attackers to modify files used by NT
AUTHORITY\SYSTEM, enabling them to run arbitrary code and elevate their privileges.

Microsoft’s Process Monitor (ProcMon) can be used to analyze and monitor file operations
on a Windows system. To filter the results and focus only on file operations from a NT
AUTHORITY\SYSTEM process executed within a folder where standard users have write
privileges, we configure the ProcMon filters listed in Figure 1. It is important to note that
standard users have write privileges to the system's C:\Windows\Temp and C:\ProgramData
folders and may sometimes have excessive privileges to their subfolders due to permission
inheritance. Therefore, these paths should also be considered when configuring the filters.

Figure 1: ProcMon filters to analyze insecure file operations from NT AUTHORITY\System

https://learn.microsoft.com/en-us/windows/win32/msi/custom-actions
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

3/9

Once configured, MSI repairs can be initiated using the Windows Installer API or by running
"msiexec.exe /fa C:\Windows\Installer\[XXXXX].msi".

Analyzing CVE-2023-26077

In this example, we will analyze the MSI installer for Atera Agent 1.8.3.6 using the
aforementioned ProcMon filters. When running the MSI’s repair functionality, we can see the
AgentPackageUpgradeAgent.exe file is executed as NT AUTHORITY\SYSTEM from the
C:\Windows\Temp\AteraUpgradeAgentPackage folder, as highlighted in Figure 2. Moreover,
we can see the process attempts to load missing dynamic-link library (DLL) files from the
same folder. Due to standard users having write permissions in
C:\Windows\Temp\AteraUpgradeAgentPackage, which contains permissions inherited from
C:\Windows\Temp, the MSI installer’s repair functionality is susceptible to a local privilege
escalation attack that can be exploited through DLL hijacking.

Figure 2: Process attempting to load missing DLLs

Figure 3: AteraUpgradeAgentPackage folder permissions

https://www.mandiant.com/resources/blog/abusing-dll-misconfigurations

4/9

To exploit the vulnerability, we simply drop a payload as one of the missing DLLs into
C:\Windows\Temp\AteraUpgradeAgentPackage, such as CRYPTSP.dll, and then run the MSI
repair to obtain a Command Prompt as NT AUTHORITY\SYSTEM.

Figure 4: Local privilege escalation via DLL hijacking

Analyzing CVE-2023-26078

Another noteworthy misconfiguration involving Custom Actions is the execution of system
commands that trigger the Windows Console Host (conhost.exe) as a child process. The
conhost.exe process is responsible for hosting and managing console windows in the
Windows operating systems. When a process runs with conhost.exe as its child process, it
opens a command window, which, if executed with elevated privileges, can be exploited by
an attacker to perform a local privilege escalation attack.

In the case of Atera's Windows installer, the repair functionality runs net.exe and
taskkill.exe as NT AUTHORITY\SYSTEM, both of which spawn conhost.exe as a child
process. This action causes a command window to briefly appear, which can be frozen by
quickly selecting a portion of the window with the mouse, as depicted in Figure 6.

Figure 5: net.exe parent-child process relationship

5/9

Figure 6: Pausing net.exe execution by highlighting part of the command window with mouse

By accessing the command window’s "Properties", an attacker can access a couple of
hyperlinks that can be utilized to open a web browser as NT AUTHORITY\SYSTEM. It is
important to note that the NT AUTHORITY\SYSTEM account does not have a web browser
configured to open hyperlinks by default. Therefore, an attacker is provided with the
opportunity to select a web browser, as illustrated in Figure 7. Once the web browser is
chosen, the remaining steps for the local privilege escalation attack involve opening the Print
menu; printing the web page to PDF to launch File Explorer; and finally executing Command
Prompt as NT AUTHORITY\SYSTEM.

6/9

Figure 7: Opening hyperlinks with web browser of choice

Figure 8: Opening Command Prompt through web browser

Programmatically Searching for MSI Files

7/9

Mandiant's red team have discovered numerous similar vulnerabilities in third-party Windows
installers, which were subsequently leveraged during red team assessments. However,
identifying which MSI files correspond to which software can be a tedious task since
Windows caches MSI files with random alphanumeric characters. To simplify this task,
Mandiant’s red team created a Beacon Object File (BOF) and a PowerShell script found in
msi_search to read and output relevant metadata for all MSI files cached in
C:\Windows\Installer. Using this tool will allow red team operators and security teams to
download relevant files to investigate local privilege escalation vulnerabilities through MSI
repairs.

Figure 9: Excerpt of msi_search BOF

Defensive Considerations

Misconfigured Custom Actions can be trivial to identify and exploit, thereby posing significant
security risks for organizations. It is essential for software developers to thoroughly review
their Custom Actions to prevent attackers from hijacking NT AUTHORITY\SYSTEM operations
triggered by MSI repairs.

When configuring Custom Actions, it is important to remember that on Windows standard
users have write permissions to the following folders and may also have write permissions to
their subfolders due to permission inheritance:

C:\Windows\Temp

C:\ProgramData

https://github.com/mandiant/msi-search

8/9

C:\ (ability to create folders)
C:\Users\XXXX*

Hence, software developers must bear this in mind and ensure that any privileged process
using these folders are appropriately secured. Alternatively, using the C:\Program Files or
C:\Program Files (x86) folders could hinder an attacker’s ability to hijack execution, as
these folders are protected by default with administrative privileges.

Atera fixed CVE-2023-26077 in version 1.8.3.7 by hardening the
C:\Windows\Temp\AteraUpgradeAgent folder to disallow standard users from writing files to
it, therefore blocking an attacker’s ability to perform a DLL hijacking attack.

Figure 10: CVE-2023-26077 fix in Atera Agent 1.8.3.7

It is also important for software developers to exercise caution when using system
commands that spawn conhost.exe as a child process. As demonstrated in CVE-2023-
26078, executing net.exe as a Custom Action could temporarily open a command window,
which could be exploited by attackers to elevate their privileges. To mitigate this potential
security risk, software developers should use WixQuietExec to silently run system
commands in the background. WixQuietExec allows commands to be executed without
displaying a command window, significantly reducing the possibility of hijacking. Atera
addressed CVE-2023-26078 in version 1.8.4.9.

To detect MSI repair privilege escalation attacks, incident responders and security operation
teams can monitor the Application event ID 11728 originating from non-administrator users.
This event ID is specifically associated with MSI repairs and provides valuable information

https://wixtoolset.org/docs/v3/customactions/qtexec/

9/9

such as the affected product, the user involved, and the date of the event.

Figure 11: Event ID 11728

CVE-2023-26077 Disclosure Timeline

February 28, 2023 – Vulnerability reported to Atera
March 29, 2023 – Vulnerability confirmed by Atera
April 17, 2023 – Vulnerability fixed in version 1.8.3.7

CVE-2023-26078 Disclosure Timeline

February 28, 2023 – Vulnerability reported to Atera
March 29, 2023 – Vulnerability confirmed by Atera
June 26, 2023 – Vulnerability fixed in version 1.8.4.9

