
1/16

VBA: resolving exports in runtime without
NtQueryInformationProcess or GetProcAddress

adepts.of0x.cc/vba-exports-runtime

Mar 17, 2023 Adepts of 0xCC

Dear Fellowlship, today’s homily is about bending the ungodly language of VBA to reduce
traces when writing sacrilegious prayers. Please, take a seat and listen to the story.

Prayers at the foot of the Altar a.k.a. disclaimer

I promise my intention was to stay away from VBA for the rest of my life but sometimes the
duty calls and you can not ignore it. Probably I need a therapist at this point of my life.

A long time ago in a galaxy far far away…

Months ago I released on Twitter a small snippet of code with an implementation of
freshycalls technique to dynamically resolve System Service Numbers (a.k.a. syscalls
numbers), so you avoid to hardcode the values in your payloads when syscalling from your
maldoc. Something I did not like about my initial implementation is the fact that we can not
obfuscate the NtQueryInformationProcess declaration:

Private Declare PtrSafe Function NtQueryInformationProcess Lib "NTDLL" (_

ByVal hProcess As LongPtr, _

ByVal processInformationClass As Long, _

ByRef pProcessInformation As Any, _

ByVal uProcessInformationLength As Long, _

ByRef puReturnLength As LongPtr) As Long

Of course we can apply a light obfuscation, but is going to be sigged sooner or later. So, how
can we avoid it?

Well, I only use it to get the PPEB_LDR_DATA and initiate the process of parsing the different
structures until I get the export addresses. So if I can find an alternative way to get the dll
base address of ntdll.dll I can avoid its usage. But VBA does not give you any tool to get this
info directly (or at least I am not aware of it).

A déjà vu is usually a glitch in the Matrix

My theory is that if you use an inoffensive function (e.g. NtClose) inside a sub routine it will
leave traces somewhere in memory and we will able to retrieve the pointer to NtClose. Using
this pointer as a reference location we can start to scan backwards to find the DLL base
address.

https://adepts.of0x.cc/vba-exports-runtime/
https://twitter.com/TheXC3LL/status/1566575977219645452

2/16

VBA is dark and full of terrors. I am not brave enough to light a torch and walk through their
dark galleys. So I choose the most cowardly approach: create small snippets of code and
scan the memory with Cheat Engine. After three trials I identified a reliable way (at least in
my VM) to recover the address.

Basically I get the pointer of a variable used to store the output from NtClose and I apply an
offset of -0x10 to read a pointer from here. If we read the memory at this pointer we get the
location of NtClose:

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_

 ByVal Destination As LongPtr, _

 ByVal Source As LongPtr, _

 ByVal Length As Long)

Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long

Dim ret As Long

Function leak() As LongPtr

 ret = NtClose(-1)

 Dim funcLeak As LongPtr

 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)

 leak = funcLeak

End Function

Sub sh()

 MsgBox "NtClose @ 0x" + Hex(leak())

End Sub

NtClose Address

Finally I only need to start reading group of bytes backward until we find the DLL start. To do
it I save 8 bytes each time in a LongPtr variable and then I compare it with 12894362189 that
is 4D 5A 90 00 03 00 00 00 (the classic MZ…. header):

3/16

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_

 ByVal Destination As LongPtr, _

 ByVal Source As LongPtr, _

 ByVal Length As Long)

Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long

Dim ret As Long

Function leak() As LongPtr

 ret = NtClose(-1)

 Dim funcLeak As LongPtr

 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)

 leak = funcLeak

End Function

Function findntdll() As LongPtr

 Dim check As LongPtr

 Dim leaked As LongPtr

 Dim i As LongPtr

 leaked = leak()

 For i = 0 To (leaked - 8)

 Call CopyMemory(VarPtr(check), leaked - i, 8)

 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....

 If check = 12894362189# Then

 findntdll = leaked - i

 Exit For

 End If

 Next i

End Function

Sub test()

 MsgBox "ntdll.dll at 0x" + Hex(findntdll())

End Sub

NTDLL.DLL base address

Reduce, Reuse, Recycle

4/16

If you checked my freshycalls code you can see that it can be repurposed easily to get the
export addresses and construct our own GetProcAddress():

5/16

Option Explicit

Private Declare PtrSafe Function lstrlenW Lib "KERNEL32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Function lstrlenA Lib "KERNEL32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_

 ByVal Destination As LongPtr, _

 ByVal Source As LongPtr, _

 ByVal Length As Long)

Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long

Private Type IMAGE_DOS_HEADER

 e_magic As Integer

 e_cblp As Integer

 e_cp As Integer

 e_crlc As Integer

 e_cparhdr As Integer

 e_minalloc As Integer

 e_maxalloc As Integer

 e_ss As Integer

 e_sp As Integer

 e_csum As Integer

 e_ip As Integer

 e_cs As Integer

 e_lfarlc As Integer

 e_ovno As Integer

 e_res(4 - 1) As Integer

 e_oemid As Integer

 e_oeminfo As Integer

 e_res2(10 - 1) As Integer

 e_lfanew As Long

End Type

Private Type IMAGE_DATA_DIRECTORY

 VirtualAddress As Long

 size As Long

End Type

Private Const IMAGE_NUMBEROF_DIRECTORY_ENTRIES = 16

Private Type IMAGE_OPTIONAL_HEADER

 Magic As Integer

 MajorLinkerVersion As Byte

 MinorLinkerVersion As Byte

 SizeOfCode As Long

 SizeOfInitializedData As Long

 SizeOfUninitializedData As Long

 AddressOfEntryPoint As Long

 BaseOfCode As Long

 ImageBase As LongLong

 SectionAlignment As Long

6/16

 FileAlignment As Long

 MajorOperatingSystemVersion As Integer

 MinorOperatingSystemVersion As Integer

 MajorImageVersion As Integer

 MinorImageVersion As Integer

 MajorSubsystemVersion As Integer

 MinorSubsystemVersion As Integer

 Win32VersionValue As Long

 SizeOfImage As Long

 SizeOfHeaders As Long

 CheckSum As Long

 Subsystem As Integer

 DllCharacteristics As Integer

 SizeOfStackReserve As LongLong

 SizeOfStackCommit As LongLong

 SizeOfHeapReserve As LongLong

 SizeOfHeapCommit As LongLong

 LoaderFlags As Long

 NumberOfRvaAndSizes As Long

 DataDirectory(IMAGE_NUMBEROF_DIRECTORY_ENTRIES - 1) As IMAGE_DATA_DIRECTORY

End Type

Private Type IMAGE_FILE_HEADER
 Machine As Integer

 NumberOfSections As Integer

 TimeDateStamp As Long

 PointerToSymbolTable As Long

 NumberOfSymbols As Long

 SizeOfOptionalHeader As Integer

 Characteristics As Integer

End Type

Private Type IMAGE_NT_HEADERS

 Signature As Long 'DWORD Signature;

 FileHeader As IMAGE_FILE_HEADER 'IMAGE_FILE_HEADER FileHeader;

 OptionalHeader As IMAGE_OPTIONAL_HEADER 'IMAGE_OPTIONAL_HEADER OptionalHeader;

End Type

Dim ret As Long

Private Function StringFromPointerW(ByVal pointerToString As LongPtr) As String

 Const BYTES_PER_CHAR As Integer = 2

 Dim tmpBuffer() As Byte

 Dim byteCount As Long

 ' determine size of source string in bytes

 byteCount = lstrlenW(pointerToString) * BYTES_PER_CHAR

 If byteCount > 0 Then

 'Resize the buffer as required

 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer

 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)

 End If

7/16

 'Straigth assigment Byte() to String possible - Both are Unicode!

 StringFromPointerW = tmpBuffer

End Function

Public Function StringFromPointerA(ByVal pointerToString As LongPtr) As String

 Dim tmpBuffer() As Byte

 Dim byteCount As Long

 Dim retVal As String

 ' determine size of source string in bytes

 byteCount = lstrlenA(pointerToString)

 If byteCount > 0 Then

 ' Resize the buffer as required

 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer

 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)

 End If

 ' Convert (ANSI) buffer to VBA string

 retVal = StrConv(tmpBuffer, vbUnicode)

 StringFromPointerA = retVal

End Function

Function leak() As LongPtr

 ret = NtClose(-1)

 Dim funcLeak As LongPtr

 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)

 leak = funcLeak

End Function

Function findntdll() As LongPtr

 Dim check As LongPtr

 Dim leaked As LongPtr

 Dim i As LongPtr

 leaked = leak()

 For i = 0 To (leaked - 8)

 Call CopyMemory(VarPtr(check), leaked - i, 8)

 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....

 If check = 12894362189# Then

 findntdll = leaked - i

 Exit For

 End If

 Next i

End Function

Sub walkExports()

8/16

 Dim dllbase As LongPtr

 Dim DosHeader As IMAGE_DOS_HEADER

 Dim pNtHeaders As LongPtr

 Dim ntHeader As IMAGE_NT_HEADERS

 Dim DataDirectory As IMAGE_DATA_DIRECTORY

 Dim IMAGE_EXPORT_DIRECTORY As LongPtr
'http://pinvoke.net/default.aspx/Structures.IMAGE_EXPORT_DIRECTORY

 Dim NumberOfFunctions As Long
 Dim NumberOfNames As Long

 Dim FunctionsPtr As LongPtr

 Dim NamesPtr As LongPtr

 Dim OrdinalsPtr As LongPtr

 Dim FunctionsOffset As Long

 Dim NamesOffset As Long

 Dim OrdinalsOffset As Long

 Dim OrdinalBase As Long

 ' Get ntdll.dll base

 dllbase = findntdll

 ' Get DOS Header

 Call CopyMemory(VarPtr(DosHeader), dllbase, LenB(DosHeader))

 ' Get NtHeader

 pNtHeaders = dllbase + DosHeader.e_lfanew

 Call CopyMemory(VarPtr(ntHeader), pNtHeaders, LenB(ntHeader))

 IMAGE_EXPORT_DIRECTORY = ntHeader.OptionalHeader.DataDirectory(0).VirtualAddress
+ dllbase

 'Number of Functions pIMAGE_EXPORT_DIRECTORY + 0x14
 Call CopyMemory(VarPtr(NumberOfFunctions), IMAGE_EXPORT_DIRECTORY + &H14,
LenB(NumberOfFunctions))

 'Number of Names pIMAGE_EXPORT_DIRECTORY + 0x18

 Call CopyMemory(VarPtr(NumberOfNames), IMAGE_EXPORT_DIRECTORY + &H18,
LenB(NumberOfNames))

 'AddressOfFunctions pIMAGE_EXPORT_DIRECTORY + 0x1C

 Call CopyMemory(VarPtr(FunctionsOffset), IMAGE_EXPORT_DIRECTORY + &H1C,
LenB(FunctionsOffset))

 FunctionsPtr = dllbase + FunctionsOffset

 'AddressOfNames pIMAGE_EXPORT_DIRECTORY + 0x20

 Call CopyMemory(VarPtr(NamesOffset), IMAGE_EXPORT_DIRECTORY + &H20,
LenB(NamesOffset))

 NamesPtr = dllbase + NamesOffset

 'AddressOfNameOrdianls pIMAGE_EXPORT_DIRECTORY + 0x24

 Call CopyMemory(VarPtr(OrdinalsOffset), IMAGE_EXPORT_DIRECTORY + &H24,
LenB(OrdinalsOffset))

 OrdinalsPtr = dllbase + OrdinalsOffset

9/16

 'Ordinal Base pIMAGE_EXPORT_DIRECTORY + 0x10

 Call CopyMemory(VarPtr(OrdinalBase), IMAGE_EXPORT_DIRECTORY + &H10,
LenB(OrdinalBase))

 Dim j As Long

 Dim i As Long

 j = 0

 For i = 0 To NumberOfNames - 1

 Dim tmpOffset As Long

 Dim tmpName As String

 Dim tmpOrd As Integer

 ' Get name

 Call CopyMemory(VarPtr(tmpOffset), NamesPtr + (LenB(tmpOffset) * i),
LenB(tmpOffset))

 tmpName = StringFromPointerA(tmpOffset + dllbase)

 Cells(j + 1, 1) = tmpName

 'Get Ordinal

 Call CopyMemory(VarPtr(tmpOrd), OrdinalsPtr + (LenB(tmpOrd) * i),
LenB(tmpOrd))

 Cells(j + 1, 2) = tmpOrd + OrdinalBase

 'Get Address

 tmpOffset = 0

 Call CopyMemory(VarPtr(tmpOffset), FunctionsPtr + (LenB(tmpOffset) *
tmpOrd), LenB(tmpOffset))

 Cells(j + 1, 3) = Hex(tmpOffset + dllbase)

 j = j + 1

 Next i

End Sub

10/16

List of Exports

Now I have a poor man’s GetProcAddress(). Using the DispCallFunc trick is everything I
need to call arbitrary functions from DLLs that are loaded in Excell process. For example,
let’s combine all to move a file from Location A to Location B:

https://secureyourit.co.uk/wp/2020/11/28/vbafunctionpointers/

11/16

Option Explicit

Private Declare PtrSafe Function DispCallFunc Lib "OleAut32.dll" (ByVal pvInstance As
Long, ByVal offsetinVft As LongPtr, ByVal CallConv As Long, ByVal retTYP As Integer,
ByVal paCNT As Long, ByRef paTypes As Integer, ByRef paValues As LongPtr, ByRef
retVAR As Variant) As Long

Private Declare PtrSafe Function lstrlenW Lib "kernel32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Function lstrlenA Lib "kernel32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (_

 ByVal Destination As LongPtr, _

 ByVal Source As LongPtr, _

 ByVal Length As Long)

Private Declare PtrSafe Function CloseHandle Lib "kernel32" (ByVal ObjectHandle As
LongPtr) As Long

Private Type IMAGE_DOS_HEADER

 e_magic As Integer

 e_cblp As Integer

 e_cp As Integer

 e_crlc As Integer

 e_cparhdr As Integer

 e_minalloc As Integer

 e_maxalloc As Integer

 e_ss As Integer

 e_sp As Integer

 e_csum As Integer

 e_ip As Integer

 e_cs As Integer

 e_lfarlc As Integer

 e_ovno As Integer

 e_res(4 - 1) As Integer

 e_oemid As Integer

 e_oeminfo As Integer

 e_res2(10 - 1) As Integer

 e_lfanew As Long

End Type

Private Type IMAGE_DATA_DIRECTORY

 VirtualAddress As Long

 size As Long

End Type

Private Const IMAGE_NUMBEROF_DIRECTORY_ENTRIES = 16

Private Type IMAGE_OPTIONAL_HEADER

 Magic As Integer

 MajorLinkerVersion As Byte

 MinorLinkerVersion As Byte

 SizeOfCode As Long

 SizeOfInitializedData As Long

 SizeOfUninitializedData As Long

12/16

 AddressOfEntryPoint As Long

 BaseOfCode As Long

 ImageBase As LongLong

 SectionAlignment As Long

 FileAlignment As Long

 MajorOperatingSystemVersion As Integer

 MinorOperatingSystemVersion As Integer

 MajorImageVersion As Integer

 MinorImageVersion As Integer

 MajorSubsystemVersion As Integer

 MinorSubsystemVersion As Integer

 Win32VersionValue As Long

 SizeOfImage As Long

 SizeOfHeaders As Long

 CheckSum As Long

 Subsystem As Integer

 DllCharacteristics As Integer

 SizeOfStackReserve As LongLong

 SizeOfStackCommit As LongLong

 SizeOfHeapReserve As LongLong

 SizeOfHeapCommit As LongLong

 LoaderFlags As Long

 NumberOfRvaAndSizes As Long

 DataDirectory(IMAGE_NUMBEROF_DIRECTORY_ENTRIES - 1) As IMAGE_DATA_DIRECTORY

End Type

Private Type IMAGE_FILE_HEADER
 Machine As Integer

 NumberOfSections As Integer

 TimeDateStamp As Long

 PointerToSymbolTable As Long

 NumberOfSymbols As Long

 SizeOfOptionalHeader As Integer

 Characteristics As Integer

End Type

Private Type IMAGE_NT_HEADERS

 Signature As Long 'DWORD Signature;

 FileHeader As IMAGE_FILE_HEADER 'IMAGE_FILE_HEADER FileHeader;

 OptionalHeader As IMAGE_OPTIONAL_HEADER 'IMAGE_OPTIONAL_HEADER OptionalHeader;

End Type

Dim ret As Long

Private Function StringFromPointerW(ByVal pointerToString As LongPtr) As String

 Const BYTES_PER_CHAR As Integer = 2

 Dim tmpBuffer() As Byte

 Dim byteCount As Long

 ' determine size of source string in bytes

 byteCount = lstrlenW(pointerToString) * BYTES_PER_CHAR

 If byteCount > 0 Then

 'Resize the buffer as required

13/16

 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer

 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)

 End If

 'Straigth assigment Byte() to String possible - Both are Unicode!

 StringFromPointerW = tmpBuffer

End Function

Public Function StringFromPointerA(ByVal pointerToString As LongPtr) As String

 Dim tmpBuffer() As Byte

 Dim byteCount As Long

 Dim retVal As String

 ' determine size of source string in bytes

 byteCount = lstrlenA(pointerToString)

 If byteCount > 0 Then

 ' Resize the buffer as required

 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer

 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)

 End If

 ' Convert (ANSI) buffer to VBA string

 retVal = StrConv(tmpBuffer, vbUnicode)

 StringFromPointerA = retVal

End Function

Function leak() As LongPtr

 ret = CloseHandle(-1)

 Dim funcLeak As LongPtr

 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)

 leak = funcLeak

End Function

Function findntdll() As LongPtr

 Dim check As LongPtr

 Dim leaked As LongPtr

 Dim i As LongPtr

 leaked = leak()

 For i = 0 To (leaked - 8)

 Call CopyMemory(VarPtr(check), leaked - i, 8)

 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....

 If check = 12894362189# Then

 findntdll = leaked - i

 Exit For

 End If

 Next i

14/16

End Function

Private Function walkExports(dllbase As LongPtr, export As String)

 Dim DosHeader As IMAGE_DOS_HEADER

 Dim pNtHeaders As LongPtr

 Dim ntHeader As IMAGE_NT_HEADERS

 Dim DataDirectory As IMAGE_DATA_DIRECTORY

 Dim IMAGE_EXPORT_DIRECTORY As LongPtr
'http://pinvoke.net/default.aspx/Structures.IMAGE_EXPORT_DIRECTORY

 Dim NumberOfFunctions As Long
 Dim NumberOfNames As Long

 Dim FunctionsPtr As LongPtr

 Dim NamesPtr As LongPtr

 Dim OrdinalsPtr As LongPtr

 Dim FunctionsOffset As Long

 Dim NamesOffset As Long

 Dim OrdinalsOffset As Long

 Dim OrdinalBase As Long

 ' Get DOS Header

 Call CopyMemory(VarPtr(DosHeader), dllbase, LenB(DosHeader))

 ' Get NtHeader

 pNtHeaders = dllbase + DosHeader.e_lfanew

 Call CopyMemory(VarPtr(ntHeader), pNtHeaders, LenB(ntHeader))

 IMAGE_EXPORT_DIRECTORY = ntHeader.OptionalHeader.DataDirectory(0).VirtualAddress
+ dllbase

 'Number of Functions pIMAGE_EXPORT_DIRECTORY + 0x14
 Call CopyMemory(VarPtr(NumberOfFunctions), IMAGE_EXPORT_DIRECTORY + &H14,
LenB(NumberOfFunctions))

 'Number of Names pIMAGE_EXPORT_DIRECTORY + 0x18

 Call CopyMemory(VarPtr(NumberOfNames), IMAGE_EXPORT_DIRECTORY + &H18,
LenB(NumberOfNames))

 'AddressOfFunctions pIMAGE_EXPORT_DIRECTORY + 0x1C

 Call CopyMemory(VarPtr(FunctionsOffset), IMAGE_EXPORT_DIRECTORY + &H1C,
LenB(FunctionsOffset))

 FunctionsPtr = dllbase + FunctionsOffset

 'AddressOfNames pIMAGE_EXPORT_DIRECTORY + 0x20

 Call CopyMemory(VarPtr(NamesOffset), IMAGE_EXPORT_DIRECTORY + &H20,
LenB(NamesOffset))

 NamesPtr = dllbase + NamesOffset

 'AddressOfNameOrdianls pIMAGE_EXPORT_DIRECTORY + 0x24

 Call CopyMemory(VarPtr(OrdinalsOffset), IMAGE_EXPORT_DIRECTORY + &H24,
LenB(OrdinalsOffset))

 OrdinalsPtr = dllbase + OrdinalsOffset

 'Ordinal Base pIMAGE_EXPORT_DIRECTORY + 0x10

15/16

 Call CopyMemory(VarPtr(OrdinalBase), IMAGE_EXPORT_DIRECTORY + &H10,
LenB(OrdinalBase))

 Dim i As LongPtr

 For i = 0 To NumberOfNames - 1

 Dim tmpOffset As Long

 Dim tmpName As String

 Dim tmpOrd As Integer

 ' Get name

 Call CopyMemory(VarPtr(tmpOffset), NamesPtr + (LenB(tmpOffset) * i),
LenB(tmpOffset))

 tmpName = StringFromPointerA(tmpOffset + dllbase)

 'Get Ordinal

 Call CopyMemory(VarPtr(tmpOrd), OrdinalsPtr + (LenB(tmpOrd) * i),
LenB(tmpOrd))

 'Get Address

 tmpOffset = 0

 Call CopyMemory(VarPtr(tmpOffset), FunctionsPtr + (LenB(tmpOffset) * tmpOrd),
LenB(tmpOffset))

 If tmpName = export Then

 walkExports = tmpOffset + dllbase

 Exit For

 End If

 Next i

End Function

Public Function stdCallA(address As LongPtr, ByVal RetType As VbVarType, ParamArray
P() As Variant)

 Dim CC_STDCALL As Integer

 Dim VType(0 To 63) As Integer, VPtr(0 To 63) As LongPtr

 Dim i As Long, pFunc As Long, V(), HRes As Long

 ReDim V(0)

 CC_STDCALL = 4

 V = P

 For i = 0 To UBound(V)

 If VarType(P(i)) = vbString Then P(i) = StrConv(P(i), vbFromUnicode): V(i) =
StrPtr(P(i))

 VType(i) = VarType(V(i))
 VPtr(i) = VarPtr(V(i))

 Next i

 HRes = DispCallFunc(0, address, CC_STDCALL, RetType, i, VType(0), VPtr(0),
stdCallA)

End Function

Sub test()

 Dim dllbase As LongPtr

 Dim lResult As Long

 Dim func01 As LongPtr 'CopyFileA

16/16

 'Find kernel32.dll base

 dllbase = findntdll

 func01 = walkExports(dllbase, "CopyFileA")

 MsgBox Hex(func01)

 lResult = stdCallA(func01, vbLong, "C:\Users\vagrant\tests\TestA",
"C:\Users\vagrant\tests\testB", 0)

End Sub

Is not beautiful?

EoF

We hope you enjoyed this reading! Feel free to give us feedback at our twitter
@AdeptsOf0xCC.

PS.: Remember to wear your NBQ suit before touching VBA

https://twitter.com/AdeptsOf0xCC

