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An in-depth look at the Golang Windows calls
leandrofroes.github.io/posts/An-in-depth-look-at-Golang-Windows-calls

Hi! This is my very first blog entry! I’ve created this blog to do both force myself to publish

more of my study notes as well as to share as much as I can online so I hope you enjoy it. =)

Disclaimer

It’s important to mention this research is a work in progress and might receive updates

in the future. If you find anything wrong here please let me know and I’ll be happy to fix

it!

The code snippets presented in this blogpost were obtained from the Golang source

code. To make it easier to understand I added some more comments on it and removed

some parts of the code for better visualization.

When I started this research I found no one talking about these internals aspects,

specially how those could be abused so I’m assuming what I’m presenting here is a kind

of “novel approach” (uuuh, fancy… hahaha). If you know someone that did this kind of

work in the past please let me know! I would love to check it.

Motivation

At the end of last year (2022) I had to analyze some obfuscated and trojanized Go malwares,

basically perform some triage to know more about what it does and how it does the stuff. Due

to the Go nuances and runtime aspects my first approach was analyze it statically and after

some time into it I thought I was wasting too much time for what should be just a simple

triage in the first place.

That said, I decided to go to a dynamic approach and my first idea was something that I think

most part of RE people would do: trace the API calls. In order to do that I used API Monitor

cause it’s easy to use and very powerful. Unfortunatelly the output was very noisy and not

that complete and I was not happy with it. This experiment made me ask myself why it’s that

noisy? How are those Windows API calls performed? And this is how I started this research.

From a Golang function to the Windows API

The big question we want to answer in this blogpost is: what happens when an application

compiled using Go calls a function? Regardless what it does in the middle the program would

need to either compile the Windows libraries statically or call into the OS functions at some

point (e.g. calling the exported function, performing the syscall directly, etc)

A simple Go call

https://leandrofroes.github.io/posts/An-in-depth-look-at-Golang-Windows-calls/
http://www.rohitab.com/apimonitor
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To answer that question, let’s take the Hostname  function from the os package as an

example:

package os


// Hostname returns the host name reported by the 
kernel.

func Hostname() (name string, err error) {


return hostname()

}


As we can see, this function is just a wrapper for another function named hostname , also

defined in the os  package:

https://pkg.go.dev/os
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func hostname() (name string, err error) {

// Use PhysicalDnsHostname to uniquely identify host in a cluster

const format = windows.ComputerNamePhysicalDnsHostname


n := uint32(64)

for {

	 b := make([]uint16, n)

	 err := windows.GetComputerNameEx(format, &b[0], &n) // Our 

target

	 if err == nil {

	 	 return syscall.UTF16ToString(b[:n]), nil

	 }

	 if err != syscall.ERROR_MORE_DATA {

	 	 return "", NewSyscallError("ComputerNameEx", err)

	 }


	 // If we received an ERROR_MORE_DATA, but n doesn't get 
larger,


	 // something has gone wrong and we may be in an infinite 
loop


	 if n <= uint32(len(b)) {

	 	 return "", NewSyscallError("ComputerNameEx", err)

	 }

}


}
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Despite some checks performed this function is very simple, it just calls a function named

GetComputerNameEx  in the windows  package in order to get the hostname. The curious

thing about it is that the name of this function is also the name of a Windows API function

that is also used to retrieve the hostname.

Doing a quick search in the Go source code we can find the function implementation and

notice it ends up calling a function named Syscall :

func GetComputerNameEx(nametype uint32, buf *uint16, n *uint32) (err error) {

r1, _, e1 := syscall.Syscall(procGetComputerNameExW.Addr(), 3, 

uintptr(nametype), uintptr(unsafe.Pointer(buf)), uintptr(unsafe.Pointer(n)))

if r1 == 0 {

	 err = errnoErr(e1)

}

return


}


To understand what’s going on here let’s start looking at the procGetComputerNameExW

variable being passed as the first parameter to the Syscall  function.

Checking a bit more into the windows  package source we can see this

procGetComputerNameExW  variable being initialized earlier using both the NewLazyDLL

and NewProc  functions:

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getcomputernamew
https://github.com/golang/go
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moddwmapi   = NewLazySystemDLL("dwmapi.dll")

modiphlpapi = NewLazySystemDLL("iphlpapi.dll")

modkernel32 = NewLazySystemDLL("kernel32.dll") // Our target module

modmswsock  = NewLazySystemDLL("mswsock.dll")

modnetapi32 = NewLazySystemDLL("netapi32.dll")


// reducted


procGetCommTimeouts = modkernel32.NewProc("GetCommTimeouts")

procGetCommandLineW = modkernel32.NewProc("GetCommandLineW")

procGetComputerNameExW = modkernel32.NewProc("GetComputerNameExW") // Our target 
function

procGetComputerNameW = modkernel32.NewProc("GetComputerNameW")

procGetConsoleMode = modkernel32.NewProc("GetConsoleMode")


The first thing to notice here is that there’s a lot of real Windows API function and DLL

names being passed to those functions. At this point we can start to assume this might have

something to do with the API itself, so let’s keep going!

What those two functions being used do is simply initialize the procGetComputerNameExW

variable as a LazyProc  and that will basically allow it to have access to the Addr  function,

which is the function being called in the parameter for the syscall.Syscall  call:

// NewLazyDLL creates new LazyDLL associated with DLL file.

func NewLazyDLL(name string) *LazyDLL {


return &LazyDLL{Name: name}

}


type LazyDLL struct {

Name string


// System determines whether the DLL must be loaded from the

// Windows System directory, bypassing the normal DLL search

// path.

System bool
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mu  sync.Mutex

dll *DLL // non nil once DLL is loaded


}


// NewProc returns a LazyProc for accessing the named procedure in the 
DLL d.

func (d *LazyDLL) NewProc(name string) *LazyProc {


return &LazyProc{l: d, Name: name}

}


// A LazyProc implements access to a procedure inside a LazyDLL.

// It delays the lookup until the Addr function is called.

type LazyProc struct {


Name string


mu   sync.Mutex

l    *LazyDLL

proc *Proc


}
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Resolving the Windows API functions

Once the Addr  function is called it performs some calls here and there but the important

function it calls is named Find . This function calls a function named Load  followed by one

named FindProc :

// Addr returns the address of the procedure represented by p.

// The return value can be passed to Syscall to run the procedure.

// It will panic if the procedure cannot be found.

func (p *LazyProc) Addr() uintptr {


p.mustFind()

return p.proc.Addr()


}


// mustFind is like Find but panics if search fails.

func (p *LazyProc) mustFind() {


e := p.Find()

if e != nil {

	 panic(e)

}


}


func (p *LazyProc) Find() error {

// Non-racy version of:

// if p.proc == nil {

if atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(&p.proc))) == nil 

{ // Check if the func addr is not resolved already

	 p.mu.Lock()

	 defer p.mu.Unlock()

	 if p.proc == nil {

	 	 e := p.l.Load() // Attempt to load the module

	 	 if e != nil {

	 	 	 return e

	 	 }

	 	 proc, e := p.l.dll.FindProc(p.Name) // Resolve export 

function addr

	 	 if e != nil {

	 	 	 return e

	 	 }

	 	 // Non-racy version of:

	 	 // p.proc = proc
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	 	 atomic.StorePointer((*unsafe.Pointer)
(unsafe.Pointer(&p.proc)), unsafe.Pointer(proc))


	 }

}

return nil


}
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If you’re a bit familiar with Windows and RE you probably already figured what’s going on

here. The Load  function is responsible for loading the module in which exports the

requested Windows API function and FindProc  resolves the exported function address.

This steps are performed using the classic combination of LoadLibrary  +

GetProcAddress :

func (d *LazyDLL) Load() error {

// Non-racy version of:

// if d.dll != nil {

if atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(&d.dll))) != nil { 

// Check if the module is loaded already

	 return nil

}

d.mu.Lock()

defer d.mu.Unlock()

if d.dll != nil {

	 return nil

}


// kernel32.dll is special, since it's where LoadLibraryEx comes from.

// The kernel already special-cases its name, so it's always

// loaded from system32.

var dll *DLL

var err error

if d.Name == "kernel32.dll" {

	 dll, err = LoadDLL(d.Name) // Wrapper to syscall_loadlibrary

} else {

	 dll, err = loadLibraryEx(d.Name, d.System) // Wrapper to 

LoadLibraryExW

}

if err != nil {

	 return err

}


// Non-racy version of:

// d.dll = dll

atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(&d.dll)), 

unsafe.Pointer(dll))

return nil


}


func LoadDLL(name string) (dll *DLL, err error) {

namep, err := UTF16PtrFromString(name)

if err != nil {
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	 return nil, err

}

h, e := syscall_loadlibrary(namep) // Perform the LoadLibraryA call

if e != 0 {

	 return nil, &DLLError{

	 	 Err:     e,

	 	 ObjName: name,

	 	 Msg:     "Failed to load " + name + ": " + e.Error(),

	 }

}

d := &DLL{

	 Name:   name,

	 Handle: h,

}

return d, nil


}


// loadLibraryEx wraps the Windows LoadLibraryEx function.

//
// See https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684179(v=vs.85).aspx

//
// If name is not an absolute path, LoadLibraryEx searches for the DLL

// in a variety of automatic locations unless constrained by flags.

// See: https://msdn.microsoft.com/en-us/library/ff919712%28VS.85%29.aspx

func loadLibraryEx(name string, system bool) (*DLL, error) {


loadDLL := name

var flags uintptr

if system {

	 if canDoSearchSystem32() {

	 	 flags = LOAD_LIBRARY_SEARCH_SYSTEM32

	 } else if isBaseName(name) {

	 	 // WindowsXP or unpatched Windows machine

	 	 // trying to load "foo.dll" out of the system

	 	 // folder, but LoadLibraryEx doesn't support

	 	 // that yet on their system, so emulate it.

	 	 systemdir, err := GetSystemDirectory()

	 	 if err != nil {

	 	 	 return nil, err

	 	 }

	 	 loadDLL = systemdir + "\\" + name

	 }

}

h, err := LoadLibraryEx(loadDLL, 0, flags) // Wrapper to syscall.Syscall 

using procLoadLibraryExW

if err != nil {

	 return nil, err

}

return &DLL{Name: name, Handle: h}, nil


}


// FindProc searches DLL d for procedure named name and returns *Proc

// if found. It returns an error if search fails.

func (d *DLL) FindProc(name string) (proc *Proc, err error) {


namep, err := BytePtrFromString(name)

if err != nil {

	 return nil, err

}

a, e := syscall_getprocaddress(d.Handle, namep) // Perform the 

GetProcAddress call

if e != 0 {

	 return nil, &DLLError{




11/34

	 	 Err:     e,

	 	 ObjName: name,

	 	 Msg:     "Failed to find " + name + " procedure in " + 

d.Name + ": " + e.Error(),

	 }

}

p := &Proc{

	 Dll:  d,

	 Name: name,

	 addr: a,

}

return p, nil


}
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What version of the LoadLibrary function it uses? It depends. During the runtime

initialization it uses LoadLibraryA to load kernel32.dll and LoadLibraryExA to load the rest

of the modules the runtime requires. All the other modules are loaded via LoadLibraryExW.

Of course this can change in future versions of Go so what really matters here is that the

module will be loaded.

Once the address of the desired function is obtained it’s returned by the previously

mentioned Addr  function and passed to the syscall.Syscall  function.

Very nice, right?! This is exactly how Golang resolves the address of (almost) all the Windows

API functions required by a Golang application. So yes, it’s basically the classic runtime

linking approach.

Now you might be wondering: ok, the desired Windows API functions are resolved using

GetProcAddress , but how is the address of GetProcAddress  function resolved? Well,

there’s no magic here. The GetProcAddress  address, along with other functions the

runtime package depends on are present in every Golang application Import Table, so their

addresses are resolved by the Windows Loader in load time.

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://learn.microsoft.com/en-us/windows/win32/dlls/run-time-dynamic-linking
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Example of the Import Table of a Golang application using DIE

Another question that you might ask is: are literally all the Windows API functions resolved

this way? Well, not exactly. As mentioned already, some functions used by the runtime

package would be resolved by the Windows loader, but there’s some others that seems to be

“optional” (but still part of the runtime package and still resolved) that would take a different

path and do not rely on those “Syscall” calls. Those would use calls with the stdcall  prefix.

However, regardless the path it takes those would still rely on GetProcAddress  and will

take the same “final path”. We’ll learn more about it in a bit.

Since most part of the functions we care about (the ones that are not part of the runtime) are

resolved using the Syscall  path we’ll focus on those.

That said, if we search for some function named like “syscall_whatever” (e.g.

syscall_CreateFile ) in a tool like IDA we’ll always see exactly the functions we discussed

being called (i.e. Addr  followed by a Syscall<n> ).

https://leandrofroes.github.io/assets/images/die_it_go.png
https://github.com/horsicq/Detect-It-Easy
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Disassembly view of syscall_CreateFile in IDA

If you want to play with what we’ve learned so far here’s a nice exercise for you: a way to

monitor what Windows API functions are being resolved by a Go application is setting a

conditional breakpoint at GetProcAddress using x64dbg and logging the second parameter to

the call (lpProcName). Then you can use something like {utf8@rdx}  (x64 environment in

this case) as the log text and 0  as the break condition to make sure it will not break. By

doing so you’re going to see functions from all the packages being resolved in the Log

output:

https://leandrofroes.github.io/assets/images/create_file_syscall.png
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://github.com/x64dbg/x64dbg


17/34

Example of the functions resolved by a Go application using x64dbg

Since both the runtime package and the other dependencies would rely on

GetProcAddress  the output would be a bit noisy, but still interesting. By the end of this

article we’ll learn how to filter the noise and only get the functions being resolved by the main

package.

Now that we kind of understand part of the chain the remanining question is: how are the

calls actually performed? How the Go package interacts with the Windows API? We saw

functions like syscall_getprocaddress  being called or even the syscall.Syscall  one,

but what exactly happens there?

Before we move forward I would like to give a step back and introduce a few more concepts to

make the rest of the reading easier to follow.

Goroutines

A goroutine can be defined as a function executing concurrently with other goroutines in the

same address space. Go implements an architecture that uses way less resources than the

regular threads to execute code. Some examples that make goroutines kind of better in terms

of performance when compared against the regular multithreading model is that usually it’s

stack start very small (around 2KB) and it doesn’t need to switch to kernel mode or save too

much registers in the context switch.

All the goroutines are handled by an usermode scheduler implemented in the Go runtime

package. During execution the Go runtime creates a few threads and schedules the

goroutines onto those OS threads to be executed. Once a goroutine is blocked in an operation

(e.g. sleep, network input, channel operations) the scheduler changes the context to other

https://leandrofroes.github.io/assets/images/x64dbg_go_funcs.png
https://go.dev/tour/concurrency/1
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goroutines, with no impact in the real threads. This architecture makes Go applications very

performatic cause although they’re multithread some of the negative impacts caused by the

classic multithread approach are handled by the runtime.

Of course regardless this abstraction the code would still end up going through the real

thread, but the key here is the design of the language.

The Go Scheduler

Go implements a scheduler that works in an M:N model, where M  goroutines are scheduled

onto N  OS threads throughout the program execution. The scheduler manages three types

of resources:

G : represents a goroutine and contains information about the code to execute.

M : represents an OS thread and where to execute the goroutine code.

P : represents a “processor”. Basically a resource that is required to execute Go code.

The max number of Ps is defined in the GOMAXPROCS var.

Each M  must be associated to a P  and a P  can have multiple M , but only one can be

executing. The scheduler works with a global and a local queue of goroutines and manages

their execution using a work sharing/stealing model.

And how Go creates/handles these structures for each thread? It uses the Windows Thread

Local Storage (TLS) mechanism.

The Go system calls

Alright, now let’s go back to the GetComputerNameEx  function. Remember the

syscall.Syscall  call? It turns out that Golang defines several functions using the

“Syscall” prefix and those are all wrappers to another function named SyscallN :

//go:linkname syscall_Syscall syscall.Syscall

//go:nosplit

func syscall_Syscall(fn, nargs, a1, a2, a3 uintptr) (r1, r2, err uintptr) {


return syscall_SyscallN(fn, a1, a2, a3)

}


//go:linkname syscall_Syscall6 syscall.Syscall6

//go:nosplit

func syscall_Syscall6(fn, nargs, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err 
uintptr) {


return syscall_SyscallN(fn, a1, a2, a3, a4, a5, a6)

}


//go:linkname syscall_Syscall9 syscall.Syscall9

//go:nosplit


https://learn.microsoft.com/en-us/windows/win32/procthread/thread-local-storage
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func syscall_Syscall9(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9 uintptr) (r1, 
r2, err uintptr) {


return syscall_SyscallN(fn, a1, a2, a3, a4, a5, a6, a7, a8, a9)

}


//go:linkname syscall_Syscall12 syscall.Syscall12

//go:nosplit

func syscall_Syscall12(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, 
a12 uintptr) (r1, r2, err uintptr) {


return syscall_SyscallN(fn, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, 
a12)

}


// etc


The rule for the number following the “Syscall” prefix is based on the number of arguments

the function takes. The Syscall  takes up to 3 arguments, the Syscall6  takes from 4 to 6,

the Syscall9  takes from 7 to 9 and so on.
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Why Go implements it this way? I’m not sure, maybe to avoid the need to create a “Syscall”

function for each number of arguments (e.g. Syscall1, Syscall2, Syscall3, etc), making it more

generic?! I don’t know. The “downside” of this approach is that the number of parameters

provided by Go to an API function might not be precise (e.g. CreateFileW would be invoked

using 9 parameters but the real API call takes only 7). Either way, that would still work cause

Windows would not care about it and only handle the real parameters.

Anyway, let’s see how SyscallN  is implemented in the runtime package:

func syscall_SyscallN(trap uintptr, args ...uintptr) (r1, r2, err uintptr) {

nargs := len(args)


// asmstdcall expects it can access the first 4 arguments

// to load them into registers.

var tmp [4]uintptr

switch {

case nargs < 4:

	 copy(tmp[:], args)

	 args = tmp[:]

case nargs > maxArgs: // Check if the number of args is more than the 

suported value

	 panic("runtime: SyscallN has too many arguments")

}


lockOSThread()

defer unlockOSThread()

// What we actually care about

c := &getg().m.syscall // Init the Golang system call structure

c.fn = trap // Set the Windows API function address

c.n = uintptr(nargs) // Set the number of arguments

c.args = uintptr(noescape(unsafe.Pointer(&args[0]))) // Set the arguments 

array

cgocall(asmstdcallAddr, unsafe.Pointer(c)) // Call the asmcgocall

return c.r1, c.r2, c.err


}


https://github.com/golang/go/tree/master/src/runtime
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In this function we’ll focus on 2 things: the c  variable initialization and the call to the

cgocall  function.

Regarding the initialization, remember the g  we talked about in the scheduler

introduction? The getg()  function is the one responsible for getting the current goroutine

information. In the snippet above it also access the m  structure inside the g , which as we

learned represents the thread the goroutine is associated to. It then access another structure

named syscall  and assign it to the c  variable.

This syscall  is of the type libcall  and this structure defines all the information the Go

runtime needs to perform a Windows API call:

// Defined inside the "m" struct in the "runtime" 
package


syscall   libcall // stores syscall parameters on 
windows


// reducted


type libcall struct {

fn   uintptr // Windows function address

n    uintptr // Number of parameters

args uintptr // Parameters array

r1   uintptr // Return values

r2   uintptr // Floating point return value

err  uintptr // Error number


}
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Now that we know more about the libcall  structure definition, the SyscallN  operations

start to be easier to understand. The initialization steps are the following:

c := &getg().m.syscall : initialize c  with the libcall  structure, allowing it to

access the required Windows API information.

c.fn = trap : set the resolved Windows API address (first parameter of SyscallN ).

c.n = uintptr(nargs) : set the number of arguments based on the Syscall<n>

function used.

c.args = uintptr(noescape(unsafe.Pointer(&args[0]))) : set the array of

arguments to be used in the API function (second parameter of SyscallN )

Once it’s all set the c  variable is then passed to the cgocall  call as a parameter (a

structure pointer), along with another variable named asmstdcall  (a function pointer).

One thing that is important to mention is that for x86 binaries there’s no SyscallN  so the

cgocall  is called by the Syscall<n>  functions directly:

Example of a Syscall call in x64
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https://leandrofroes.github.io/assets/images/syscall_wrapper_x64.png
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Example of a Syscall call in x86

Now that we’ve learned a bit more about it all, remember the syscall_getprocaddress

and syscall_loadlibrary  calls? Since they are kind of special due to the fact they are

resolved by the Windows loader they would not rely on the “Syscall” path, but as mentioned

already the “final path” to actually perform the OS call is still the same. As we can see the

steps it performs are pretty much the same of SyscallN :

//go:linkname syscall_loadlibrary syscall.loadlibrary

//go:nosplit


https://leandrofroes.github.io/assets/images/syscall_wrapper_x86.png
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//go:cgo_unsafe_args

func syscall_loadlibrary(filename *uint16) (handle, err uintptr) {


lockOSThread()

defer unlockOSThread()

c := &getg().m.syscall

c.fn = getLoadLibrary() // Get the address at the IAT

c.n = 1 // Hardcoded argc
c.args = uintptr(noescape(unsafe.Pointer(&filename)))

cgocall(asmstdcallAddr, unsafe.Pointer(c))

KeepAlive(filename)

handle = c.r1

if handle == 0 {

	 err = c.err

}

return


}


//go:linkname syscall_getprocaddress syscall.getprocaddress

//go:nosplit

//go:cgo_unsafe_args

func syscall_getprocaddress(handle uintptr, procname *byte) (outhandle, err 
uintptr) {


lockOSThread()

defer unlockOSThread()

c := &getg().m.syscall

c.fn = getGetProcAddress() // Get the address at the IAT

c.n = 2 // Hardcoded argc
c.args = uintptr(noescape(unsafe.Pointer(&handle)))

cgocall(asmstdcallAddr, unsafe.Pointer(c))

KeepAlive(procname)

outhandle = c.r1

if outhandle == 0 {

	 err = c.err

}

return


}
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cgocall & asmcgocall

At this point we know that cgocall  function receives both a variable named asmstdcall

and a pointer to the c  structure as parameters.

This function is responsible for things such as call the entersyscall  function in order to

not block neither other goroutines nor the garbage collector and then call exitsyscall

that blocks until this m  can run Go code without violating the GOMAXPROCS  limit. Though

this is not that important for our goal, the step that matters for us here is a call performed to

a function named asmcgocall, passing the asmstdcall  variable and the c  structure to it

(the fn  and arg  arguments passed to cgocall ):

https://github.com/golang/go/blob/master/src/runtime/asm_amd64.s#L832
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// runtime.cgocall(_cgo_Cfunc_f, frame)


func cgocall(fn, arg unsafe.Pointer) int32 {


// reducted


errno := asmcgocall(fn, arg) // func asmcgocall(fn, arg unsafe.Pointer) 
int32


Disassemlby view of the cgocall call

Since we’re in a x64 environment due to the Go ABI the first parameter would be passed via

RAX  and the second via RBX .

https://leandrofroes.github.io/assets/images/cgocall_ida.png
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The asmcgocall  function switches to a system-allocated stack and then calls the asmstdcall

function (the variable passed to cgocall ).

Both asmcgocall  and asmstdcall  functions are gcc-compiled functions written by cgo

hence the attempt to switch to what Go calls the “system stack” to be safer to run gcc-

compiled code.

Disassemlby view of the asmcgocall call

asmstdcall: the “magic call gate”

We finally reached the most important function in this whole chain! The asmstdcall  is the

Go runtime function responsible for calling the real Windows API function. This function

receives a single parameter passed through RCX  in x64 and ESP+4  in x86. And what is

received via this parameter? The famous c  structure!

The image bellow is an example of the asmstdcall  in a x64 environment. I added some

comments in each assembly instruction to make it easier to understand:

https://github.com/golang/go/blob/master/src/runtime/sys_windows_amd64.s#L15
https://leandrofroes.github.io/assets/images/asmcgocall_ida.png
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asmstdcall view in IDA

Overall this function would simply prepare the registers for the API call (copy the parameters

to the proper registers, use the stack if needed, etc), perform the call to the API itself and

then set the results of it into the c  structure.

To summarize everything we’ve learned so far I’ve created a very simple image with the Go

call flow:

https://leandrofroes.github.io/assets/images/asmstdcall_ida.png
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General overview of how Go handles the API calls

This explanation finishes up the whole flow of how binaries written in Go would resolve and

call the Windows API functions.

Tracing Golang Windows API calls with gftrace

As we can see, asmstdcall  is a very powerful function, not only because it’s the one that

performs the real Windows API call, but also because it manipulates all the relevant

information needed for that call (e.g. function address, parameters, return value etc).

https://leandrofroes.github.io/assets/images/go_calls_graph.png
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After a lot of tests I also noticed this function is present in a lot of Go versions (if not all),

making this function very portable and reliable. I didn’t test all of the Go versions but I can

say for sure it was there in a lot of different versions.

With that in mind, I decided to create a tool to “abuse” the Go runtime behavior, specifically

the asmstdcall  function and this was how I ended up creating a Windows API tracing tool

I named gftrace.

How it works?

The way it works is very straight forward, it injects the gftrace.dll  file into a suspended

process (the filepath is passed through the command line) and this DLL performs a mid-

function hook inside the asmstdcall  function. The main thread of the target process is

then resumed and the target program starts. At this point, every Windows API call performed

by the Go application is analyzed by gftrace  and it decides if the obtained information

needs to be logged or not based on the filters provided by the user. The tool will only log the

functions specified by the user in the gftrace.cfg file.

The tool collects all the API information manipulated by asmstdcall  (the c  information),

formats it and prints to the user. Since the hook is performed after the API call itself

gftrace  is also able to collect the API function return value.

As an example, the following is part of the output generated by the tool against the

Sunshuttle malware:

https://github.com/leandrofroes/gftrace/
https://github.com/leandrofroes/gftrace/blob/master/tracer/gftrace.cfg
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C:\Users\User>gftrace.exe sunshuttle.exe


- CreateFileW("config.dat.tmp", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 
0xffffffffffffffff (-1)

- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x2, 0x80, 0x0) = 0x198 
(408)

- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x3, 0x80, 0x0) = 0x1a4 
(420)

- WriteFile(0x1a4, 0xc000112780, 0xeb, 0xc0000c79d4, 0x0) = 0x1 (1)

- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)

- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x1f0 (496)

- WSASend(0x1f0, 0xc00004f038, 0x1, 0xc00004f020, 0x0, 0xc00004eff0, 0x0) = 0x0 
(0)

- WSARecv(0x1f0, 0xc00004ef60, 0x1, 0xc00004ef48, 0xc00004efd0, 0xc00004ef18, 
0x0) = 0xffffffff (-1)

- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)

- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x200 (512)

- WSASend(0x200, 0xc00004f2b8, 0x1, 0xc00004f2a0, 0x0, 0xc00004f270, 0x0) = 0x0 
(0)

- WSARecv(0x200, 0xc00004f1e0, 0x1, 0xc00004f1c8, 0xc00004f250, 0xc00004f198, 
0x0) = 0xffffffff (-1)


[...]


The simpler the better

Most part of the time in order to monitor API calls you need to hook them in some way and

also have a prototype for the function, otherwise would be tricky to guess the number of

parameters the function takes as well as the type of those parameters.

gftrace  uses the information provided by c  to figure what is the name of the function

being called and the number of arguments it takes. It also tries to figure the type of the

parameters by performing some simple checks to determine if it’s a string, an address, etc. By

doing so it does not require any function prototype in order to work and it’s able to trace

every single API function performed by a Go application. The only information the user

needs to provide in the gftrace.cfg  file is a list of the API function names to trace. Simple

like that!

Ignoring the runtime noise

During my tests I noticed that one of the last initilization functions called in Golang

applications is a init  function in the os  package. This init  function performs a call to

syscall_GetCommandLine  and that call ends up being a call to the Windows

GetCommandLineW function.

https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-getcommandlinew
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What gftrace  does is use GetCommandLineW  as a kind of sentinel. It waits for this call to

happen and only after that it starts to trace the API calls according to the user filters. By

doing so it avoids resolving and printing all the API calls performed by the runtime package,

making the tool output very clean and focused on the main  package calls.

Some other interesting aspects

After spending some time playing with the tool I noticed some interesting things regarding

the Windows API calls Go uses:

1. It always rely on the unicode version of the Windows functions (CreateFileW,

CreateProcessW, GetComputerNameExW, etc).

2. Due to the Go design some calls would be very noisy by default before the call to the

desired function. As an example, when you execute a command via cmd  in Go it would

first perform several calls to CreateFileW  before a call to CreateProcessW .

3. Memory and thread management functions such as VirtualAlloc ,

GetThreadContext , CreateThread , etc are usually used several times by the

runtime and probably will not be used by the main  package.

I created a config file in gftrace  project that considers it all. It does not includes the

regular functions used by the runtime and also only filters by the unicode versions. For item

3 it’s up to the user to figure what function is more interesting for each scenario.

Why gftrace might be a good option?

Of course it would always be a matter of preference, there’s some amazing tools available that

can handle API tracing, but here’s some reasons I believe gftrace  is also a nice option:

1. Golang binaries might be a pain to reverse sometimes so this tool can be very handy for

fast malware triage for example since it’s very easy and fast to use.

2. It performs a single hook in the runtime package without touching any Windows API

function and does not require function prototypes. Those things make the tool very

portable, fast and reliable.

3. It’s designed for Go applications specifically so it handles all the runtime nuances such

as the runtime calls noise before the calls from the main  package.

If you want to check how to configure and use the tool make sure you check the project page!

Final thoughts

I need to say I had a lot of fun in this research and eventually I still play with it all. It made

me learn A LOT about how Golang Internals work. There’s a few other details I didn’t put

here in this blogpost but I might update it in the future.

https://github.com/leandrofroes/gftrace
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Regarding the source code, I’ve tried to put as much comments as possible and also make it

very clean in order to be easy and nice to people use to study, etc. The tool is still under

development and probably has a lot of things to be improved so please threat it as a PoC code

for now.

Anyway, I hope you enjoyed the reading.

Happy reversing!








