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In October of 2022, Intel’s Alder Lake BIOS source code was leaked online. The leaked code

was comprised of firmware components that originated from three sources:

The independent BIOS vendor (IBV) named Insyde Software,

Intel’s proprietary Alder Lake BIOS reference code,

The Tianocore EDK2 open-source UEFI reference implementation.

I obtained a copy of the leaked code and began to hunt for vulnerabilities. This writeup

focuses on the vulnerabilities that I found and reported to Insyde Software. These bugs span

various System Management Mode (SMM) modules, including:

Insyde H2O Internal Soft-SMI Interface (IHISI) dispatcher

Flash BIOS Through SMI (FTBS) handlers

BIOS Guard SMI handlers

What is System Management Mode and Why is it Interesting?

Before diving into the bug details, let’s first take a brief detour to talk about System

Management Mode. SMM is a highly privileged x86 operating mode. It has a variety of

purposes, including control of hardware and peripherals, handling hardware interrupts,

power management, and more. SMM is sometimes referred to as “Ring -2” using the

protection ring nomenclature.

https://research.nccgroup.com/2023/04/11/stepping-insyde-system-management-mode/
https://www.bleepingcomputer.com/news/security/intel-confirms-leaked-alder-lake-bios-source-code-is-authentic/
https://www.insyde.com/
https://github.com/tianocore/edk2
https://git.tcp.direct/TheParmak/ICE_TEA_BIOS
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x86 Protection Levels

A CPU transitions to System Management Mode when a System Management Interrupt

(SMI) is issued. A SMI can be generated from hardware or from software, such as by writing

to an IO port. These interrupts are high priority and are unmaskable (e.g., they can’t be

ignored).

SMM executes from a protected region of memory known as System Management RAM

(SMRAM). The System-Management Range Register (SMRR) can be (*ahem* should be)

programmed to restrict access to the SMRAM region, preventing external agents from

accessing SMRAM. In other words, the OS should not be able to read or write SMRAM to

directly influence SMM execution.
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SMRAM Layout

SMM execution is transparent to the operating system. While a SMI handler is executing, the

so-called SMI Rendezvous procedure will cause the other CPU cores to also enter SMM and

wait. The OS can’t see or inspect what SMM is doing.

But on the other hand, SMM can influence OS execution. SMM has (nearly) full access to the

platform’s DRAM. I say nearly here, because there are a few exceptions, such as certain

DRAM carveouts that are owned by the even-more-highly-privileged firmware IPs, like

AMD’s PSP or Intel’s CSME.

Beyond near-complete access to physical memory, SMM possesses additional powerful

capabilities: It has full access to the platform’s SPI flash, and it can read/write all MSRs.

For these reasons, SMM is a desirable location for attackers to implant a bootkit. Such a

bootkit will be simultaneously invisible to most anti-virus software and will also be highly

privileged. If you want to read more on the topic of bootkits, Alex Matrosov has done an

excellent job of documenting some examples. You might also be curious to check out the

SmmBackdoor project.

One of the most essential security requirements for preventing runtime exploitation of SMM

is that the integrity of SMRAM must be upheld. In other words: Simply don’t do memory

corruption. But as we know, this is a tall order, especially because SMM firmware is written

in C, where undefined behavior runs rampant and upholding memory safety is akin to the

delicate circus act of balancing several spinning plates.

https://github.com/tianocore/edk2/blob/a1d595fc9c049874b972a371fe6090738a176f5b/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c#L1713
https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://github.com/Cr4sh/SmmBackdoor
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So unsurprisingly, over the years there have been countless examples of memory corruption

vulnerabilities in SMM. For further reading, I encourage you to check out Xeno Kovah’s

catalogue of Low Level PC/Server Attacks for an impressive timeline of SMM vulnerability

research (among other cool firmware security topics!).

SMM Attack Surfaces

Within SMM, individual SMI handlers are registered using the gSmst-

>SmiHandlerRegister()  function. Each handler has a unique GUID, which is used to select

the appropriate handler when the OS invokes a SMI.

Arguments can be passed to the SMI handlers via a Communication Buffer in shared

memory. Strict input validation of all arguments passed to a SMI handler is paramount to

preserve the property of memory safety.

Another attack surface relates to various platform resources that are shared between SMM

and other agents such as the host OS, peripherals, and firmware IPs. Here, race conditions

such as time-of-check-time-of-use (TOCTOU) problems are also a significant concern. Some

typical examples of shared resources that are consumed by SMM include the following:

SPI flash (e.g., EFI variables)

Memory-Mapped I/O (e.g., PCIe BARs)

Shared physical memory regions (e.g., the SMI Comm Buffer)

Model Specific Registers (MSRs)

Because these resources can be shared between multiple agents of differing privilege levels, a

malicious low-privilege agent could tamper with the shared data while SMM is in the midst

of processing it.

Another notable vulnerability class in SMM is the confused deputy. Confused deputy

problems can occur when an attacker passes a pointer argument to SMM (e.g., the Comm

Buffer) but forces the buffer to overlap with SMRAM. If the SMI handler fails to validate the

pointer (don’t forget nested pointers too!), it may mistakenly read or write its own address

space, believing it is reading SMI input or writing SMI output. This, of course, would have

the undesirable result of corrupting SMRAM.

https://darkmentor.com/timeline.html
https://github.com/tianocore/edk2/blob/cab1f02565d3b29081dd21afb074f35fdb4e1fd6/MdeModulePkg/Core/PiSmmCore/PiSmmCore.h#L655
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Communication Buffer Overlap

If you want to read more on these topics, check out the “A Tour Beyond BIOS: SMM

Communication” whitepaper for an in depth description of these and other vulnerability

classes that relate to SMM.

Finally, I want to add that Microsoft’s “Secured-Core PC” initiative is beginning to push the

industry towards stronger SMM hardening through the use of an SMM Supervisor, which

effectively deprivileges and isolates SMI handlers. Though, like most defensive technologies,

creative people will find ways to break it. For example, last year Ilja van Sprundel of IOActive

presented some excellent research that reveals several critical vulnerabilities in Microsoft’s

MM Supervisor which is part of Project Mu.

The Focus of My Research

SMI handlers typically receive input arguments via the Communication Buffer, which resides

in a region of shared memory that may be statically or dynamically defined. As mentioned

above, the Comm Buffer must be positioned outside of SMRAM, and it is the duty of SMM to

enforce this every time a SMI is handled.

However, SMI handlers may also receive arguments through general purpose registers. So

how does that work? Well, when an SMI is issued by the OS, the processor state is saved, and

execution context is switched to SMM. The saved general purpose registers reside inside

SMRAM within the State Save Area. All of this is necessary because when a SMI handler

completes, CPU state must be restored so that execution control can be returned to the caller.

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://github.com/microsoft/mu_feature_mm_supv
https://microsoft.github.io/mu/
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/SmmCpu.h#L21
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High Level SMI Flow (from ABC to XYZ of SMM Drivers)

Of course, a malicious or compromised host OS could place any values in these registers prior

to invoking the SMI. Per SMM’s threat model, the OS is completely untrusted, so the SMI

handlers must be extremely cautious to validate all data that is read from the Save State Area.

For my research, I focused on the Insyde H2O (Hardware-2-Operating System) UEFI BIOS,

which exposes an SMI interface named IHISI (Insyde H2O Internal Soft-SMI Interface). This

interface is made up of many sub-commands which read and write these saved state

registers, treating them as arguments to the sub-command handlers.

Let’s dive into the bug details!

Vulnerability Details

All these vulnerabilities share a common root cause (insufficient input validation) and a

common impact (SMRAM corruption). Their details are summarized in the following table:

https://www.youtube.com/watch?v=BQajtsy6kp0


7/16

# Title CVE Insyde CVSS

1 IhisiServicesSmm: Save State Register Not
Checked Before Use

CVE-2023-
22616

SA-
2023022

6.4

2 IhisiServicesSmm: Memory Corruption in FTBS SMI
Handler

CVE-2023-
22612

SA-
2023019

8.1

3 IhisiServicesSmm: IHISI Subfunction Execution
May Corrupt SMRAM.

CVE-2023-
22615

SA-
2023021

6.4

4 IhisiServicesSmm: Write To Attacker Controlled
Address

CVE-2023-
22613

SA-
2023023

7.3

5 ChipsetSvcSmm: Insufficient Input Validation In
BIOS Guard Updates

CVE-2023-
22614

SA-
2023020

7.9

These issues were fixed in the Insyde release which occurred on April 10th 2023. They impact

several different Insyde platforms, spanning Intel and AMD mobile and server devices. The

specific platforms and versions can be found in the Insyde advisories, linked above.

Bug 1. IhisiServicesSmm: Save State Register Not Checked Before
Use

The following SMI handler is an IHISI sub-function that is associated with Insyde’s Flash

BIOS Through SMI (FTBS) functionality. The handler reads a structure pointer named

BiosRomMap  from RDI in the Save State Area.

EFI_STATUS EFIAPI FbtsGetWholeBiosRomMap ( VOID )

{

 UINTN                                 RomMapSize;

 UINTN                                 NumberOfRegions;

 FBTS_INTERNAL_BIOS_ROM_MAP           *BiosRomMap;

 UINTN                                 Indxe;


 NumberOfRegions = 0;

 BiosRomMap  = (FBTS_INTERNAL_BIOS_ROM_MAP *) (UINTN)

                   mH2OIhisi->ReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RDI);

 ...

This pointer is not validated before it is dereferenced for both read and write operations. A

confused deputy vulnerability arises when the caller forces RDI to point to SMRAM. This

effectively coerces SMM into mistakenly accessing its own private memory space.

Next, the BiosRomMap  array is walked to count the NumberOfRegions , which influences

the for-loop sentinel condition, potentially allowing Indxe  (sic) to accumulate to a large

integer value. Together, these missing input validation problems may allow an attacker to

corrupt SMRAM on the lines below:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22616
https://www.insyde.com/security-pledge/SA-2023022
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22612
https://www.insyde.com/security-pledge/SA-2023019
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22615
https://www.insyde.com/security-pledge/SA-2023021
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22613
https://www.insyde.com/security-pledge/SA-2023023
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22614
https://www.insyde.com/security-pledge/SA-2023020
https://www.insyde.com/security-pledge#InsydeApr102023
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 ...

 while (BiosRomMap[NumberOfRegions].Type != FbtsRomMapEos) {

   NumberOfRegions++;

 }

 NumberOfRegions++;


 RomMapSize = NumberOfRegions * sizeof (FBTS_INTERNAL_BIOS_ROM_MAP);

 for (Indxe = 0; Indxe < (NumberOfRegions - 1); Indxe++) {

   BiosRomMap[Indxe].Address =  BiosRomMap[Indxe].Address 

                                - PcdGet32(PcdFlashAreaBaseAddress) 

                                + PcdGet32(PcdFlashPartBaseAddress);

 }

 ...


Finally, before returning, the saved RDI register is used to copy the updated BiosRomMap

back to the caller who invoked the SMI handler.

 ...

 CopyMem ((VOID *)(UINTN)mH2OIhisi->ReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RDI),

          (VOID *)BiosRomMap, 

          RomMapSize);

 return IHISI_SUCCESS;

}


But once again, because RDI was not previously checked to prevent overlap with SMRAM,

this CopyMem  operation could overwrite SMRAM.

Bug 2. IhisiServicesSmm: Memory Corruption in FTBS SMI Handler

The Insyde IHISI exposes a sub-command (AH=0x48) which is handled by the following

function.

The SMI handler receives attacker-controlled input through the save-state register, RSI.

Below, ImageBlkPtr  is tainted by the caller, and is dereferenced without checking whether

it overlaps SMRAM. Additionally, the nested pointer, ImageBlock , is also dereferenced

without checking for SMRAM overlap.

EFI_STATUS SecureFlashFunction ( VOID )

{

 ...

   ImageBlkPtr = (FBTS_SECURE_FLASH_IMAGE_BLOCK_STRUCTURE*)(UINTN) 

                       IhisiProtReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RSI);


   ImageBlock = ImageBlkPtr->BlockDataItem;

   ImageBase = (UINT8*)(UINTN)(ImageBlock->ImageBlockAddress);

 ...
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Next, the inner-most pointer named ImageBase  is finally checked to ensure it doesn’t

overlap SMRAM. But when checking for overlap, the call to

IhisiProtBufferInCmdBuffer()  uses the ImageBlock->ImageBlockSize  value, which

also happens to be attacker controlled. This effectively allows this sanity check to be easily

circumvented.

 ...

   if (!IhisiProtBufferInCmdBuffer ((VOID *)ImageBase, (UINTN)(ImageBlock-
>ImageBlockSize)))

   {

     mFlashImageInfo.RemainingImageSize = 0;

     return IHISI_BUFFER_RANGE_ERROR;

   }

 ...


Later in the SMI handler, MergeImageBlockWithoutCompress()  is called. This function

also reads the RSI save-stage register to get the ImageBlkPtr  pointer. This time, the

function does check whether the pointer overlaps SMRAM, but it does so only after

dereferencing it. This dereference-then-validate pattern is most likely only an uninteresting

denial of service.

EFI_STATUS MergeImageBlockWithoutCompress (

 IN EFI_PHYSICAL_ADDRESS       TargetImageAddress

 )

{

 ...

 TotalImageSize = mFlashImageInfo.TotalImageSize - 
mFlashImageInfo.RemainingImageSize;

 ImageBlkPtr = (FBTS_SECURE_FLASH_IMAGE_BLOCK_STRUCTURE*)(UINTN) 

                 IhisiProtReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RSI);

 ...

 NumberOfImageBlk = ImageBlkPtr->BlockNum;

 if (!IhisiProtBufferInCmdBuffer ((VOID *) ImageBlkPtr, NumberOfImageBlk)) {

   return IHISI_BUFFER_RANGE_ERROR;

 }

 ...


However, what is more interesting is the usage of the ImageBlock  pointer because we know

from earlier analysis that this pointer is attacker controlled. If it points into attacker-

controlled memory, it is subject to TOCTOU vulnerabilities. As a result, ImageBlock-

>ImageBlockSize  can change between the several dereferences, shown below.
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 ...

 ImageBlock = ImageBlkPtr->BlockDataItem;

 ...

 Destination = (UINT8 *) (UINTN) (TargetImageAddress + TotalImageSize);

 for (Index = 0; Index < NumberOfImageBlk; Index++) {

   if (!FeaturePcdGet(PcdH2OIhisiCmdBufferSupported)   

       ImageBlock->ImageBlockSize > UTILITY_ALLOCATE_BLOCK_SIZE)

   {

     // The max block size need co-operate with utility

     return EFI_INVALID_PARAMETER;

   }   


   CopyMem ((VOID *) Destination,

            (UINT8 *)(UINTN) ImageBlock->ImageBlockAddress,

            (UINTN) ImageBlock->ImageBlockSize);

   ...

 }


If a DMA-capable attacker wins this race condition, they can modify ImageBlock-

>ImageBlockSize  after it has been validated but before it is used in the CopyMem()  call.

This results in corruption of memory beyond the end of the Destination  memory region.

Curiously, the Destination  pointer was originally obtained from the “SecureFlashInfo”

EFI variable (not shown for the sake of brevity), which is stored with the BS+RT+NV

attributes, indicating that its value is also controllable by a malicious host OS.

In conclusion, this means that the attacker controls the destination address, source address

and size parameters that are passed to CopyMem() . This is a powerful write-what-where

memory corruption primitive.

Bug 3. IhisiServicesSmm: IHISI Subfunction Execution May Corrupt
SMRAM

The following code block shows the main IHISI subfunction dispatcher. It walks a table of

subfunctions, finds a registered subfunction that matches the command code, and then

invokes the handler function, as shown below:

https://edk2-docs.gitbook.io/edk-ii-uefi-driver-writer-s-guide/5_uefi_services/readme.2/525_getvariable_and_setvariable
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EFI_STATUS EFIAPI IhisiProtExecuteCommandByPriority (

 IN UINT32         CmdCode,

 IN UINT8          FromPriority,

 IN UINT8          ToPriority

 )

{

 EFI_STATUS                    Status;

 LIST_ENTRY                   *Link;

 IHISI_COMMAND_ENTRY          *CmdNode;

 IHISI_FUNCTION_ENTRY         *FunctionNode;


 CmdNode = IhisiFindCommandEntry (CmdCode);

 ...

 for (Link = GetFirstNode ( CmdNode->FunctionChain);

      !IsNull ( CmdNode->FunctionChain, Link);

      Link = GetNextNode ( CmdNode->FunctionChain, Link))

 {

   FunctionNode = IHISI_FUNCTION_ENTRY_FROM_LINK (Link);

   if (FunctionNode->Priority > ToPriority || FunctionNode->Priority < FromPriority) 
{

     continue;

   }    

   Status = FunctionNode->Function();

   ...


After the subfunction returns, and if the CmdCode  is equal to OEMSFOEMExCommunication ,

the contents of the communication buffer will be copied back to the caller as the SMI output.

The destination address for this CopyMem()  operation is decided by the caller of the SMI

handler because it was passed in the RCX save state register.

   ...

   if (CmdCode == OEMSFOEMExCommunication) {

     CopyMem( (AP_COMMUNICATION_DATA_TABLE*) (UINTN) 

                  IhisiProtReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RCX),

               mApCommDataBuffer,

              sizeof (AP_COMMUNICATION_DATA_TABLE) );

   }   

   ...


The problem here is that when an attacker controls the contents of RCX,  they can coerce the

above code to write the mApCommDataBuffer  to an attacker-controlled location in SMRAM.

In evaluating the impact of this, we must check whether each and every IHISI subfunction

properly validates RCX before returning to the dispatcher. The relevant subfunctions that are

associated with the OEMSFOEMExCommunication  command code are listed below:
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STATIC IHISI_REGISTER_TABLE OEM_EXT_COMMON_REGISTER_TABLE[] = {

 { OEMSFOEMExCommunication, "S41Kn_CommuSaveRegs", KernelCommunicationSaveRegs       
},
 { OEMSFOEMExCommunication, "S41Cs_ExtDataCommun", ChipsetOemExtraDataCommunication  
},
 { OEMSFOEMExCommunication, "S41OemT01Vbios00000", OemIhisiS41T1Vbios                
},
 { OEMSFOEMExCommunication, "S41OemT54LogoUpdate", OemIhisiS41T54LogoUpdate          
},
 { OEMSFOEMExCommunication, "S41OemT55CheckSignB", 
OemIhisiS41T55CheckBiosSignBySystemBios },

 { OEMSFOEMExCommunication, "S41OemReservedFun00", OemIhisiS41ReservedFunction       
},
 { OEMSFOEMExCommunication, "S41Kn_T51EcIdelTrue", KernelT51EcIdelTrue               
},
 { OEMSFOEMExCommunication, "S41Kn_ExtDataCommun", KernelOemExtraDataCommunication   
},
 { OEMSFOEMExCommunication, "S41Kn_T51EcIdelFals", KernelT51EcIdelFalse              
},
 { OEMSFOEMExCommunication, "S41OemT50Oa30RWFun0", OemIhisiS41T50a30ReadWrite        
},
 ...


After careful inspection, we determined that most of these IHISI subfunctions perform strict

validation of the pointer stored in RCX. For example, the first handler,

KernelCommunicationSaveRegs()  is shown below. Here, we can observe that

ApCommDataBuffer  (the pointer that was read from RCX) is checked to ensure that it

correctly resides inside the Comm Buffer.
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EFI_STATUS EFIAPI KernelCommunicationSaveRegs ( VOID )

{

 AP_COMMUNICATION_DATA_TABLE      *ApCommDataBuffer;

 UINTN                            BufferSize;


 mRomBaseAddress = 0;

 mRomSize        = 0;

 ApCommDataBuffer = (AP_COMMUNICATION_DATA_TABLE*) (UINTN) 

                      IhisiProtReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RCX);


 if (!IhisiProtBufferInCmdBuffer ((VOID *) ApCommDataBuffer, 

                                  sizeof(AP_COMMUNICATION_DATA_TABLE)))

 {

   return IHISI_BUFFER_RANGE_ERROR;

 }

 ...

 BufferSize = ApCommDataBuffer->StructureSize;

 if (BufferSize < sizeof(AP_COMMUNICATION_DATA_TABLE)) {

   BufferSize = sizeof(AP_COMMUNICATION_DATA_TABLE);

 }

 if (!IhisiProtBufferInCmdBuffer ((VOID *) ApCommDataBuffer, BufferSize)) {

   return IHISI_BUFFER_RANGE_ERROR;

 }

 ...

}


However, there are two subfunctions that do not validate RCX:

KernelT51EcIdelTrue()

KernelT51EcIdelFalse()

This oversight is most likely a consequence of the fact that these subfunctions do not use

RCX, so perhaps the developer assumed it was not necessary to validate RCX. However, even

though these subfunctions never use RCX, the IhisiProtExecuteCommandByPriority()

dispatcher will still use RCX as the destination address for a CopyMem()  operation.

Therefore, if an attacker set an address in RCX that overlapped SMRAM before invoking the

S41Kn_T51EcIdelTrue  or S41Kn_T51EcIdelFalse  subfunctions, they could corrupt

SMRAM with the contents of the AP communication buffer.

Bug 4. IhisiServicesSmm: Write To Attacker Controlled Address

The following SMI handler reads a structure pointer named OutputData  from the RCX save

state register, as shown below:
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STATIC EFI_STATUS ReadDefaultSettingsToFactoryCopy ( VOID )

{

 OUTPUT_DATA_STRUCTURE          *OutputData;

 UINT64                         FactoryCopySize;


 OutputData = (OUTPUT_DATA_STRUCTURE *) (UINTN) 

                  IhisiProtReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RCX);

 ...


The SMI handler then performs writes to fields in this structure without validating

OutputData  for overlap with SMRAM.

 ...

 OutputData->BlockSize = COMMON_REGION_BLOCK_SIZE_4K;


 FactoryCopySize =  FdmGetSizeById (...); 

 ...

 if (FactoryCopySize == 0x10000) {

   OutputData->DataSize = COMMON_REGION_SIZE_64K;

 } else {

   OutputData->DataSize = COMMON_REGION_REPORT_READ_SIZE;
   OutputData->PhysicalDataSize = (UINT32) FactoryCopySize;

 }

 ...


At the risk of sounding like a broken record: Once again, this is a straightforward SMM

memory corruption vulnerability.

Bug 5. ChipsetSvcSmm: Insufficient Input Validation In BIOS Guard
Updates

BIOS Guard is a security feature under the Intel’s “Hardware Shield” marketing umbrella. It

 hardens the BIOS flash update process by restricting access to SPI flash via the BIOS Guard

ACM, which authenticates BIOS updates.  There’s little public documentation on BIOS

Guard, but this talk reveals some design aspects that Alex recovered by reverse engineering.

The following vulnerability affects Insyde’s SMM module which parses the BIOS Guard

Update Header, whose layout is shown below:

Below, the InputDataBuffer  is read from RSI, and points to the above BIOS Guard update

structure. This pointer is dereferenced to calculate the BIOS Guard certificate offset

( BgupcOffset ) without first checking whether the pointer overlaps SMRAM. Because

ScriptSectionSize  and DataSectionSize  (both UINT32  types) are tainted,

BgupcOffset  should also be considered tainted, and can take on any 32-bit integer value.

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/below-the-os-security-white-paper.pdf
https://www.youtube.com/watch?v=kSQVGFbTfqE
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BIOS Guard Update Structure

EFI_STATUS BiosGuardUpdateWrite ( 
VOID )

{

 ...

 UINT32                            
BgupcSize;

 UINT32                            
BgupcOffset;

 UINT32                            
BufferSize;

 EFI_PHYSICAL_ADDRESS              
BgupCertificate;

 UINT8                             
*InputDataBuffer;

 UINT32                            
DataSize;

 ...

 
 InputDataBuffer = (UINT8*)
(UINTN)mH2OIhisi->ReadCpuReg32 
(EFI_SMM_SAVE_STATE_REGISTER_RSI);

 BgupcOffset = sizeof(BGUP_HEADER) 
                  + ((BGUP *) 
InputDataBuffer)-
>BgupHeader.ScriptSectionSize 
                  + ((BGUP *) 
InputDataBuffer)-
>BgupHeader.DataSectionSize;

 ...


Next, BufferSize  is read from RDI,

and it is used to check whether the input buffer resides within the command buffer. However,

this code is lacking strict checks to ensure that BufferSize  is sufficiently large. If

BufferSize  happened to be smaller than the size of the BGUP_HEADER  structure, then the

earlier pointer dereferences (when reading members from BgupHeader ) might access

memory beyond the bounds of the input buffer, leading to an out-of-bounds read.

 ...

 BufferSize      =  mH2OIhisi->ReadCpuReg32 (EFI_SMM_SAVE_STATE_REGISTER_RDI);

 BgupCertificate = (EFI_PHYSICAL_ADDRESS) (mBiosGuardMemAddress 

                       + mBiosGuardMemSize

                       - BGUPC_MEMORY_OFFSET);


 if (!mH2OIhisi->BufferInCmdBuffer ((VOID *) InputDataBuffer, BufferSize)) {

   return EFI_INVALID_PARAMETER;

 }

 ...
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Then, BgupcSize  is checked to ensure it is consistent with BufferSize . However, this

sanity check can also be bypassed because the attacker controls both sides of the conditional

expression — both BgupcOffset  and BufferSize .

 ...

 if ((BgupcOffset + BgupcSize) != BufferSize) {

   return EFI_INVALID_PARAMETER;

 }

 ...


The last step taken before triggering the BIOS Guard ACM is to use the attacker-controlled

BgupcOffset  (which can be very large) to copy the certificate and update data. This is

shown below:

 ...

 ZeroMem ((VOID *)(UINT64) mBiosGuardMemAddress, mBiosGuardMemSize);

 CopyMem ((VOID *)(UINT64) mBiosGuardMemAddress, InputDataBuffer, BgupcOffset);

 CopyMem ((VOID *) BgupCertificate, InputDataBuffer + BgupcOffset, BgupcSize);

 ...


The above CopyMem()  calls can lead to corruption of SMRAM when memory beyond the

end of the mBiosGuardMemAddress  region is overwritten.

Thanks

I would like to thank Insyde PSIRT, and in particular, Kevin Davis, for being a pleasure to

work with during this disclosure period.








