
1/10

February 24, 2023

Lord Of The Ring0 - Part 4 | The call back home
idov31.github.io/2023/02/24/lord-of-the-ring0-p4.html

Prologue

In the last blog post, we learned some debugging concepts, understood what is IOCTL how to

handle it and started to learn how to validate the data that we get from the user mode - data

that cannot be trusted and a handling mistake can cause a blue screen of death.

In this blog post, I’ll explain the different types of callbacks and we will write another driver

to protect registry keys.

Kernel Callbacks

We started to talk about this subject in the 2nd part, so if you haven’t read it yet read it here

and come back as this blog is based on the knowledge you have learned in the previous ones.

For starters, let’s see what type of callbacks we’re going to learn about today:

Pre / Post operations (can be registered with ObRegisterCallbacks and talked about

it in the 2nd part).

PsSet*NotifyRoutine.

CmRegisterCallbackEx.

Each of the mentioned callbacks has its purpose and difference and the most important thing

to know is to get the right tool for the job, so for each type, I will also give an example of how

it can be used in different scenarios.

ObRegisterCallbacks

ObRegisterCallbacks is a function that allows you to register a callback of your choice for

certain events (process, thread, and much more) before or after they’re happening. To

register a callback you need to give the following structure:

typedef struct _OB_CALLBACK_REGISTRATION {

 USHORT Version;

 USHORT OperationRegistrationCount;

 UNICODE_STRING Altitude;

 PVOID RegistrationContext;

 OB_OPERATION_REGISTRATION *OperationRegistration;

} OB_CALLBACK_REGISTRATION, *POB_CALLBACK_REGISTRATION;

Version MUST be OB_FLT_REGISTRATION_VERSION.

https://idov31.github.io/2023/02/24/lord-of-the-ring0-p4.html
https://idov31.github.io/2022/10/30/lord-of-the-ring0-p3
https://idov31.github.io/2022-08-04-lord-of-the-ring0-p2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obregistercallbacks

2/10

OperationRegistrationCount is the number of registered callbacks.

Altitude is a unique identifier in form of a string with this pattern #define

OB_CALLBACKS_ALTITUDE L"XXXXX.XXXX" where X is a number. It is mandatory to define

one so the OS will be able to identify your driver and determine the load order if you don’t

define it or if the Altitude isn’t unique the registration will fail.

RegistrationContext is the handle that will be used later on to Unregister the callbacks.

Finally, OperationRegistration is an array that contains all of your registered callbacks.

OperationRegistration and every callback have this structure:

typedef struct _OB_OPERATION_REGISTRATION {

 POBJECT_TYPE *ObjectType;

 OB_OPERATION Operations;

 POB_PRE_OPERATION_CALLBACK PreOperation;

 POB_POST_OPERATION_CALLBACK PostOperation;

} OB_OPERATION_REGISTRATION, *POB_OPERATION_REGISTRATION;

ObjectType is the type of operation that you want to register to. Some of the most common

types are *PsProcessType and *PsThreadType . It is worth mentioning that although you

can enable more types (like IoFileObjectType) this will trigger PatchGuard and cause your

computer to BSOD, so unless PatchGuard is disabled it is highly not recommended to enable

more types. If you still want to enable more types, you can do so by using this like so:

typedef struct _OBJECT_TYPE

{

struct _LIST_ENTRY TypeList;

struct _UNICODE_STRING Name;

VOID* DefaultObject;

UCHAR Index;

ULONG TotalNumberOfObjects;

ULONG TotalNumberOfHandles;

ULONG HighWaterNumberOfObjects;

ULONG HighWaterNumberOfHandles;

struct _OBJECT_TYPE_INITIALIZER_TEMP TypeInfo;

struct _EX_PUSH_LOCK_TEMP TypeLock;

ULONG Key;

struct _LIST_ENTRY CallbackList;

} OBJECT_TYPE, * POBJECT_TYPE;

POBJECT_TYPE_TEMP ObjectTypeTemp = (POBJECT_TYPE_TEMP)*IoFileObjectType;

ObjectTypeTemp->TypeInfo.SupportsObjectCallbacks = 1;

Operations are the kind of operations that you are interested in, it can be

OB_OPERATION_HANDLE_CREATE and/or OB_OPERATION_HANDLE_DUPLICATE for a handle

creation or duplication.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/load-order-groups-and-altitudes-for-minifilter-drivers

3/10

PreOperation is an operation that will be called before the handle is opened and

PostOperation will be called after it is opened. In both cases, you are getting important

information through OB_PRE_OPERATION_INFORMATION or

OB_POST_OPERATION_INFORMATION such as a handle to the object, the type of the object the

return status, and what type of operation (OB_OPERATION_HANDLE_CREATE or

OB_OPERATION_HANDLE_DUPLICATE) occurred. Both of them must ALWAYS return

OB_PREOP_SUCCESS , if you want to change the return status, you can change the

ReturnStatus that you got from the operation information, but do not return anything

else.

After you registered this kind of callback, you can remove certain permissions from the

handle (for example: If you don’t want to allow a process to be closed, you can just remove

the PROCESS_TERMINATE permission as we did in part 2 of the series) or manipulate the

object itself (if it is a process, you can change the EPROCESS structure).

As you can see, these kinds of operations are very useful for both rootkits and AVs/EDRs to

protect their user mode component. Usually, if you have a user mode part you will want to

use some of these callbacks to make sure your process/thread is protected properly and

cannot be killed easily.

PsSet*NotifyRoutine

Unlike ObRegisterCallbacks PsSet notifies routines are not responsible for a handle

opening or duplicating operation but for monitoring creation/killing and loading operations,

while the most notorious ones are PsSetCreateProcessNotifyRoutine ,

PsSetCreateThreadNotifyRoutine and PsSetLoadImageNotifyRoutine all of them are

heavily used by AVs/EDRs to monitor for certain process/thread creations and DLL loading.

Let’s break it down, and talk about each function separately and what you can do with it.

PsSetCreateProcessNotifyRoutine receives a function of type

PCREATE_PROCESS_NOTIFY_ROUTINE which looks like so:

void PcreateProcessNotifyRoutine(

 [in] HANDLE ParentId,

 [in] HANDLE ProcessId,

 [in] BOOLEAN Create

)

ParentId is the PID of the process that attempts to create or kill the target process.

ProcessId is the PID of the target process.
 Create indicates whether it is a create or kill

operation.

The most common example of using this kind of routine is to watch certain processes and if

there is an attempt to create a forbidden process (e.g. create a cmd directly under Winlogon),

you can kill it.
Another example can be of creating a “watchdog” for a certain process and if it

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EPROCESS

4/10

is killed by an unauthorized process, restart it.

PsSetCreateThreadNotifyRoutine receives a function of type

PCREATE_THREAD_NOTIFY_ROUTINE which looks like so:

void PcreateThreadNotifyRoutine(

 [in] HANDLE ProcessId,

 [in] HANDLE ThreadId,

 [in] BOOLEAN Create

)

ProcessId is the PID of the process.
 ThreadId is the TID of the target thread.
 Create

indicates whether it is a create or kill operation.

A simple example of using this kind of routine is if an EDR injected its library into a process,

make sure that the library’s thread is getting killed.

PsSetLoadImageNotifyRoutine receives a function of type

PLOAD_IMAGE_NOTIFY_ROUTINE which looks like so:

void PloadImageNotifyRoutine(

 [in, optional] PUNICODE_STRING FullImageName,

 [in] HANDLE ProcessId,

 [in] PIMAGE_INFO ImageInfo

)

FullImageName is the name of the loaded image (a note here: it is not only DLLs and can be

also EXE for example).
 ProcessId is the PID of the target process.
 ImageInfo is the most

interesting part and contains a struct of type IMAGE_INFO :

typedef struct _IMAGE_INFO {

 union {

 ULONG Properties;

 struct {

 ULONG ImageAddressingMode : 8;

 ULONG SystemModeImage : 1;

 ULONG ImageMappedToAllPids : 1;

 ULONG ExtendedInfoPresent : 1;

 ULONG MachineTypeMismatch : 1;

 ULONG ImageSignatureLevel : 4;

 ULONG ImageSignatureType : 3;

 ULONG ImagePartialMap : 1;

 ULONG Reserved : 12;

 };

 };

 PVOID ImageBase;

 ULONG ImageSelector;

 SIZE_T ImageSize;

 ULONG ImageSectionNumber;

} IMAGE_INFO, *PIMAGE_INFO;

5/10

The most important properties in my opinion are ImageBase and ImageSize , using these

you can inspect and analyze the image pretty efficiently.
A simple example is if an attacker

injects a DLL into LSASS, an EDR can inspect the image and unload it if it finds it malicious.

If the ExtendedInfoPresent option is available, it means that this struct is of type

IMAGE_INFO_EX :

typedef struct _IMAGE_INFO_EX {

 SIZE_T Size;

 IMAGE_INFO ImageInfo;

 struct _FILE_OBJECT *FileObject;

} IMAGE_INFO_EX, *PIMAGE_INFO_EX;

As you can see, here you also get the FILE_OBJECT which is a handle for the file that is

backed on the disk. With that information, you can also check for reflective DLL injection (a

loaded DLL without any file backed on the disk) and it opens a door for you to monitor for

more injection methods that don’t have a file on the disk.

These kinds of functions are usually used more for EDRs and AVs rather than rootkits,

because as you can see it provides insights that are more useful for monitoring rather than

doing malicious operations but that doesn’t mean it doesn’t have a use at all. For example, a

rootkit can use the PsSetLoadImageNotifyRoutine to make sure that no AV/EDR agent is

injected into it.

CmRegisterCallbackEx

CmRegisterCallbackEx is responsible to register a registry callback that can monitor and

interfere with various registry operations such as registry key creation, deletion, querying

and more. Like the ObRegisterCallbacks functions, it receives a unique altitude and the

callback function. Let’s focus on the Registry callback function:

NTSTATUS ExCallbackFunction(

 [in] PVOID CallbackContext,

 [in, optional] PVOID Argument1,

 [in, optional] PVOID Argument2

)

CallbackContext is the context that was passed on the function registration with

CmRegisterCallbackEx .
 Argument1 is a variable that contains the information of what

operation was made (e.g. deletion, creation, setting value) and whether it is a post-operation

or pre-operation.
 Argument2 is the information itself that is delivered and its type matches

the class that was specified in Argument1 .

Using this callback, a rootkit can do many operations, from blocking a change to a specific

registry key, denying setting a specific value or hiding registry keys and values.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-cmregistercallbackex

6/10

An example is a rootkit that saves its configuration in the registry and then hides it using this

callback. To give another practical example, we will create now another driver - a driver that

can protect registry keys from deletion.

Registry Protector

First, let’s start with the DriverEntry :

7/10

#define DRIVER_PREFIX "MyDriver: "

#define DRIVER_DEVICE_NAME L"\\Device\\MyDriver"

#define DRIVER_SYMBOLIC_LINK L"\\??\\MyDriver"

#define REG_CALLBACK_ALTITUDE L"31102.0003"

PVOID g_RegCookie;

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

 UNREFERENCED_PARAMETER(RegistryPath);

 NTSTATUS status = STATUS_SUCCESS;

 UNICODE_STRING deviceName = RTL_CONSTANT_STRING(DRIVER_DEVICE_NAME);

 UNICODE_STRING symbolicLink = RTL_CONSTANT_STRING(DRIVER_SYMBOLIC_LINK);

 UNICODE_STRING regAltitude = RTL_CONSTANT_STRING(REG_CALLBACK_ALTITUDE);

 // Creating device and symbolic link.

 status = IoCreateDevice(DriverObject, 0, &deviceName, FILE_DEVICE_UNKNOWN, 0,
FALSE, &DeviceObject);

 if (!NT_SUCCESS(status)) {

 KdPrint((DRIVER_PREFIX "Failed to create device: (0x%08X)\n", status));

 return status;

 }

 status = IoCreateSymbolicLink(&symbolicLink, &deviceName);

 if (!NT_SUCCESS(status)) {

 KdPrint((DRIVER_PREFIX "Failed to create symbolic link: (0x%08X)\n",
status));

 IoDeleteDevice(DeviceObject);

 return status;

 }

 // Registering the registry callback.

 status = CmRegisterCallbackEx(RegNotify, ®Altitude, DriverObject, nullptr,
&g_RegContext, nullptr);

 if (!NT_SUCCESS(status)) {

 KdPrint((DRIVER_PREFIX "Failed to register registry callback: (0x%08X)\n",
status));

 IoDeleteSymbolicLink(&symbolicLink);

 IoDeleteDevice(DeviceObject);

 return status;

 }

 DriverObject->DriverUnload = MyUnload;

 return status;

}

We added to the standard DriverEntry initializations (Creating DeviceObject and

symbolic link) CmRegisterCallbackEx to register our RegNotify callback. Note that we

saved the g_RegContext as a global variable, as it will be used soon in the MyUnload

8/10

function to unregister the driver when the DriverUnload is called.

void MyUnload(PDRIVER_OBJECT DriverObject) {

 KdPrint((DRIVER_PREFIX "Unloading...\n"));

 NTSTATUS status = CmUnRegisterCallback(g_RegContext);

 if (!NT_SUCCESS(status)) {

 KdPrint((DRIVER_PREFIX "Failed to unregister registry callbacks: (0x%08X)\n",
status));

 }

 UNICODE_STRING symbolicLink = RTL_CONSTANT_STRING(DRIVER_SYMBOLIC_LINK);

 IoDeleteSymbolicLink(&symbolicLink);

 IoDeleteDevice(DriverObject->DeviceObject);

}

In MyUnload , we didn’t just unload the driver but also made sure to unregister our callback

using the g_RegContext from before.

9/10

NTSTATUS RegNotify(PVOID context, PVOID Argument1, PVOID Argument2) {

 PCUNICODE_STRING regPath;

 UNREFERENCED_PARAMETER(context);

 NTSTATUS status = STATUS_SUCCESS;

 switch ((REG_NOTIFY_CLASS)(ULONG_PTR)Argument1) {

 case RegNtPreDeleteKey: {

 REG_DELETE_KEY_INFORMATION* info =
static_cast<REG_DELETE_KEY_INFORMATION*>(Argument2);

 // To avoid BSOD.

 if (!info->Object)

 break;

 status = CmCallbackGetKeyObjectIDEx(&g_RegContext, info->Object, nullptr,
®Path, 0);

 if (!NT_SUCCESS(status))

 break;

 if (!regPath->Buffer || regPath->Length < 50)

 break;

 if (_wcsnicmp(LR"(SYSTEM\CurrentControlSet\Services\MaliciousService)",
regPath->Buffer, 50) == 0) {

 KdPrint((DRIVER_PREFIX "Protected the malicious service!\n"));

 status = STATUS_ACCESS_DENIED;

 }

 CmCallbackReleaseKeyObjectIDEx(regPath);

 }

 break;

 }

 return status;

}

Let’s break down what we’ve done here.
First, we checked what is the type of operation and

chose to respond only for RegNtPreDeleteKey . When we know that Argument2 contains

information of type REG_DELETE_KEY_INFORMATION we can cast to it.

After the cast, we can use the Object parameter to access the registry key itself to get the

key’s path.
To do that, we can use CmCallbackGetKeyObjectIDEx :

NTSTATUS CmCallbackGetKeyObjectIDEx(

 [in] PLARGE_INTEGER Cookie,

 [in] PVOID Object,

 [out, optional] PULONG_PTR ObjectID,

 [out, optional] PCUNICODE_STRING *ObjectName,

 [in] ULONG Flags

);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_delete_key_information

10/10

Cookie is our global g_RegContext variable.
 Object is the registry key object.

ObjectID is a unique registry identifier for our needs it can be null.
 *ObjectName is the

output registry key path, make sure it is in the kernel format.
 Flags must be 0.

When you got the ObjectName it is just a matter of comparing it and the key that you want

to protect and if it matches you can change the status to STATUS_ACCESS_DENIED to block

the operation.

You can see a full implementation of the different registry operations handling in Nidhogg’s

Registry Utils.

Conclusion

In this blog, we learned about the different types of kernel callbacks and created our registry

protector driver.
In the next blog, we will learn what kernel R/W primitives mean and how

we can use that to execute code, deepen our knowledge of interacting with the user mode and

write a simple driver that can perform AMSI bypass to apply this knowledge.

I hope that you enjoyed the blog and I’m available on Twitter, Telegram and by Mail to hear

what you think about it!
This blog series is following my learning curve of kernel mode

development and if you like this blog post you can check out Nidhogg on GitHub.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/registry-key-object-routines
https://github.com/Idov31/Nidhogg/blob/master/Nidhogg/RegistryUtils.hpp
https://twitter.com/Idov31
https://t.me/idov31
mailto:idov3110@gmail.com
https://github.com/idov31/Nidhogg

