
1/6

August 29, 2022

Bootkitting Windows Sandbox
secret.club/2022/08/29/bootkitting-windows-sandbox.html

 mrexodia, mgoodings

Aug 29, 2022

Introduction & Motivation

Windows Sandbox is a feature that Microsoft added to Windows back in May 2019. As

Microsoft puts it:

Windows Sandbox provides a lightweight desktop environment to safely run applications in
isolation. Software installed inside the Windows Sandbox environment remains “sandboxed”
and runs separately from the host machine.

The startup is usually very fast and the user experience is great. You can configure it with a

.wsb file and then double click that file to start a clean VM.

The sandbox can be useful for malware analysis and as we will show in this article, it can also

be used for kernel research and driver development. We will take things a step further though

and share how we can intercept the boot process and patch the kernel during startup with a

bootkit.

TLDR: Visit the SandboxBootkit repository to try out the bootkit for yourself.

Windows Sandbox for driver development

A few years back Jonas L tweeted about the undocumented command CmDiag . It turns out

that it is almost trivial to enable test signing and kernel debugging in the sandbox (this part

was copied straight from my StackOverflow answer).

First you need to enable development mode (everything needs to be run from an

Administrator command prompt):

CmDiag DevelopmentMode -On

Then enable network debugging (you can see additional options with CmDiag Debug):

https://secret.club/2022/08/29/bootkitting-windows-sandbox.html
https://secret.club/author/mrexodia
https://secret.club/author/mgoodings
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-configure-using-wsb-file
https://github.com/thesecretclub/SandboxBootkit
https://twitter.com/jonasLyk/status/1366700591876079623
https://stackoverflow.com/a/73266007/1806760

2/6

CmDiag Debug -On -Net

This should give you the connection string:

Debugging successfully enabled.

Connection string: -k net:port=50100,key=cl.ea.rt.ext,target=<ContainerHostIp> -v

Now start WinDbg and connect to 127.0.0.1 :

windbg.exe -k net:port=50100,key=cl.ea.rt.ext,target=127.0.0.1 -v

Then you start Windows Sandbox and it should connect:

Microsoft (R) Windows Debugger Version 10.0.22621.1 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Using NET for debugging

Opened WinSock 2.0

Using IPv4 only.

Waiting to reconnect...

Connected to target 127.0.0.1 on port 50100 on local IP <xxx.xxx.xxx.xxx>.

You can get the target MAC address by running .kdtargetmac command.

Connected to Windows 10 19041 x64 target at (Sun Aug 7 10:32:11.311 2022 (UTC +
2:00)), ptr64 TRUE

Kernel Debugger connection established.

Now in order to load your driver you have to copy it into the sandbox and you can use sc

create and sc start to run it. Obviously most device drivers will not work/freeze the VM

but this can certainly be helpful for research.

The downside of course is that you need to do quite a bit of manual work and this is not

exactly a smooth development experience. Likely you can improve it with the

<MappedFolder> and <LogonCommand> options in your .wsb file.

PatchGuard & DSE

Running Windows Sandbox with a debugger attached will disable PatchGuard and with test

signing enabled you can run your own kernel code. Attaching a debugger every time is not

ideal though. Startup times are increased by a lot and software might detect kernel debugging

and refuse to run. Additionally it seems that the network connection is not necessarily stable

across host reboots and you need to restart WinDbg every time to attach the debugger to the

sandbox.

Tooling similar to EfiGuard would be ideal for our purposes and in the rest of the post we will

look at implementing our own bootkit with equivalent functionality.

Windows Sandbox internals recap

https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://github.com/Mattiwatti/EfiGuard

3/6

Back in March 2021 a great article called Playing in the (Windows) Sandbox came out. This

article has a lot of information about the internals and a lot of the information below comes

from there. Another good resource is Microsoft’s official Windows Sandbox architecture

page.

Windows Sandbox uses VHDx layering and NTFS magic to allow the VM to be extremely

lightweight. Most of the system files are actually NTFS reparse points that point to the host

file system. For our purposes the relevant file is BaseLayer.vhdx (more details in the

references above).

What the article did not mention is that there is a folder called BaseLayer pointing directly

inside the mounted BaseLayer.vhdx at the following path on the host:

C:\ProgramData\Microsoft\Windows\Containers\BaseImages\<GUID>\BaseLayer

This is handy because it allows us to read/write to the Windows Sandbox file system without

having to stop/restart CmService every time we want to try something. The only catch is

that you need to run as TrustedInstaller and you need to enable development mode to

modify files there.

When you enable development mode there will also be an additional folder called

DebugLayer in the same location. This folder exists on the host file system and allows us to

overwrite certain files (BCD , registry hives) without having to modify the BaseLayer . The

configuration for the DebugLayer appears to be in BaseLayer\Bindings\Debug , but no

further time was spent investigating. The downside of enabling development mode is that

snapshots are disabled and as a result startup times are significantly increased. After

modifying something in the BaseLayer and disabling development mode you also need to

delete the Snapshots folder and restart CmService to apply the changes.

Getting code execution at boot time

To understand how to get code execution at boot time you need some background on UEFI.

We released Introduction to UEFI a few years back and there is also a very informative series

called Geeking out with the UEFI boot manager that is useful for our purposes.

In our case it is enough to know that the firmware will try to load EFI\Boot\bootx64.efi

from the default boot device first. You can override this behavior by setting the BootOrder

UEFI variable. To find out how Windows Sandbox boots you can run the following

PowerShell commands:

https://research.checkpoint.com/2021/playing-in-the-windows-sandbox/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-architecture
https://secret.club/2020/05/26/introduction-to-uefi-part-1.html
https://oofhours.com/2022/06/29/geeking-out-with-the-uefi-boot-manager/

4/6

> Set-ExecutionPolicy -ExecutionPolicy Unrestricted

> Install-Module UEFI

> Get-UEFIVariable -VariableName BootOrder -AsByteArray

0

0

> Get-UEFIVariable -VariableName Boot0000

�VMBus File System�VMBus�\EFI\Microsoft\Boot\bootmgfw.efi�

From this we can derive that Windows Sandbox first loads:

\EFI\Microsoft\Boot\bootmgfw.efi

As described in the previous section we can access this file on the host (as

TrustedInstaller) via the following path:

C:\ProgramData\Microsoft\Windows\Containers\BaseImages\
<GUID>\BaseLayer\Files\EFI\Microsoft\Boot\bootmgfw.efi

To verify our assumption we can rename the file and try to start Windows Sandbox. If you

check in Process Monitor you will see vmwp.exe fails to open bootmgfw.efi and nothing

happens after that.

Perhaps it is possible to modify UEFI variables and change Boot0000 (Hyper-V Manager

can do this for regular VMs so probably there is a way), but for now it will be easier to modify

bootmgfw.efi directly.

Bootkit overview

To gain code execution we embed a copy of our payload inside bootmgfw and then we

modify the entry point to our payload.

Our EfiEntry does the following:

Get the image base/size of the currently running module

Relocate the image when necessary

Hook the BootServices->OpenProtocol function

Get the original AddressOfEntryPoint from the .bootkit section

Execute the original entry point

To simplify the injection of SandboxBootkit.efi into the .bootkit section we use the

linker flags /FILEALIGN:0x1000 /ALIGN:0x1000 . This sets the FileAlignment and

SectionAlignment to PAGE_SIZE , which means the file on disk and in-memory are

mapped one-to-one.

Bootkit hooks

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

5/6

Note: Many of the ideas presented here come from the DmaBackdoorHv project by Dmytro

Oleksiuk, go check it out!

The first issue you run into when modifying bootmgfw.efi on disk is that the self integrity

checks will fail. The function responsible for this is called BmFwVerifySelfIntegrity and

it directly reads the file from the device (e.g. it does not use the UEFI BootServices API).

To bypass this there are two options:

1. Hook BmFwVerifySelfIntegrity to return STATUS_SUCCESS

2. Use bcdedit /set {bootmgr} nointegritychecks on to skip the integrity checks.

Likely it is possible to inject this option dynamically by modifying the LoadOptions ,

but this was not explored further

Initially we opted to use bcdedit , but this can be detected from within the sandbox so

instead we patch BmFwVerifySelfIntegrity .

We are able to hook into winload.efi by replacing the boot services OpenProtocol

function pointer. This function gets called by EfiOpenProtocol , which gets executed as

part of winload!BlInitializeLibrary .

In the hook we walk from the return address to the ImageBase and check if the image

exports BlImgLoadPEImageEx . The OpenProtocol hook is then restored and the

BlImgLoadPEImageEx function is detoured. This function is nice because it allows us to

modify ntoskrnl.exe right after it is loaded (and before the entry point is called).

If we detect the loaded image is ntoskrnl.exe we call HookNtoskrnl where we disable

PatchGuard and DSE. EfiGuard patches very similar locations so we will not go into much

detail here, but here is a quick overview:

Driver Signature Enforcement is disabled by patching the parameter to

CiInitialize in the function SepInitializeCodeIntegrity

PatchGuard is disabled by modifying the KeInitAmd64SpecificState initialization

routine

Bonus: Logging from Windows Sandbox

To debug the bootkit on a regular Hyper-V VM there is a great guide by tansadat.

Unfortunately there is no known way to enable serial port output for Windows Sandbox

(please reach out if you know of one) and we have to find a different way of getting logs out.

Luckily for us Process Monitor allows us to see sandbox file system accesses (filter for

vmwp.exe), which allows for a neat trick: accessing a file called \EFI\my log string . As

long as we keep the path length under 256 characters and exclude certain characters this

works great!

https://github.com/Cr4sh/s6_pcie_microblaze/blob/4d50dd99b3ac252fc99f81ebd133345ca359e857/python/payloads/DmaBackdoorHv/README.MD
https://twitter.com/d_olex
https://github.com/Mattiwatti/EfiGuard/blob/25bb182026d24944713e36f129a93d08397de913/EfiGuardDxe/PatchNtoskrnl.c
https://github.com/tandasat/MiniVisorPkg/blob/master/Docs/Testing_UEFI_on_Hyper-V.md
https://github.com/tandasat

6/6

A more primitive way of debugging is to just kill the VM at certain points to test if code is

executing as expected:

void Die() {

 // At least one of these should kill the VM

 __fastfail(1);

 __int2c();

 __ud2();

 (UINT8)0xFFFFFFFFFFFFFFFFull = 1;

}

Bonus: Getting started with UEFI

The SandboxBootkit project only uses the headers of the EDK2 project. This might not be

convenient when starting out (we had to implement our own EfiQueryDevicePath for

instance) and it might be easier to get started with the VisualUefi project.

Final words

That is all for now. You should now be able to load a driver like TitanHide without having to

worry about enabling test signing or disabling PatchGuard! With a bit of registry

modifications you should also be able to load DTrace (or the more hackable implementation

STrace) to monitor syscalls happening inside the sandbox.

https://github.com/tianocore/edk2
https://github.com/ionescu007/VisualUefi
https://github.com/mrexodia/TitanHide
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/dtrace
https://github.com/mandiant/STrace

