
the-deniss.github.io December 8, 2022

Hooking System Calls in Windows 11 22H2 like Avast
Antivirus. Research, analysis and bypass

the-deniss.github.io/posts/2022/12/08/hooking-system-calls-in-windows-11-22h2-like-avast-antivirus.html

Dec 8, 2022

0x00: Introduction

Sometimes ago I’ve researched Avast Free Antivirus (post about found vulnerabilities coming
soon), and going through the chain of exploitation I needed to bypass self-defense
mechanism. Since antivirus self-defense isn’t, in my opinion, a security boundary, bypassing
this mechanism isn’t a vulnerability, and therefore I didn’t consider it so interesting to write
about it in my blog. But when I stumbled upon the post by Yarden Shafir, I decided that this
post could still be useful to someone. Hope you’ll enjoy reading it!

TL;DR: In this post I’ll show Avast self-defense bypass, but I’ll focus not on the result, but
on the process: on how I learned how the security feature is implemented, discovered a new
undocumented way to intercept all system calls without a hypervisor and PatchGuard
triggered BSOD, and, finally, based on the knowledge gained, implemented a bypass.

0x01 Self-Defense Overview

Every antivirus (AV) self-defense is a proprietary undocumented mechanism, so no official
documentation exists. However, I will try to guide you through the most important common
core aspects. The details here should be enough to understand the next steps of the research.

Typical self-protection of an antivirus is a mechanism similar in purpose to Protected
Process Light (PPL): developers try to move product processes into their own security
domain, but without using special certificates (protected process (light) verification OID in
EKU), to make it impossible for an attacker to tamper and terminate their own processes.
That is, self-protection is similar in function to PPL, but is not a part or extension of it -
EPROCESS.Protection doesn’t contain flags set by AV and therefore RtlTestProtectedAccess
cannot prevent access to secured objects. Therefore, developers on one’s own have to:

1. Assign and manage process trust tags (on creating process, on making suspicious
actions);

2. Intercept operating system (OS) operations that are important from the point of view of
invasive impact (opening processes, threads, files for writing) and check if they violate
the rules of the selected policy.

https://the-deniss.github.io/posts/2022/12/08/hooking-system-calls-in-windows-11-22h2-like-avast-antivirus.html
https://www.avast.com/en-us/free-antivirus-download
https://windows-internals.com/an-exercise-in-dynamic-analysis/
https://en.wikipedia.org/wiki/Kernel_Patch_Protection

And if everything is simple and clear with the first point - what bugs to look for there (e.g.
CVE-2021-45339), then the second point requires clarification. What and how do antiviruses
intercept? Due to PatchGuard and compatibility requirements, developers have rather poor
options, namely, to use only limited number of documented hooks. And there are not so
many that can help defend the process:

1. Ob-Callbacks - prevent opening for write process, thread;
2. Driver Minifilter - prevents writing to product’s files;
3. Some user-mode hooks - other preventions.

I’m not going to delve into detail of how this works under the hood, but if you’re not familiar
with these mechanisms, I encourage you to follow the links above. On this, we consider the
gentle introduction into the self-defense of the antivirus over and we can proceed to the
research.

0x02 Probing Avast Self-Defense

When you need to interact with OS objects, NtObjectManager is an excellent choice. This is
PowerShell module written by James Forshaw, and is a powerful wrapper for a very large
number of OS APIs. With it, you can also check how processes are protected by self-defense,
whether AV driver mechanisms give more access than they should. And I started with a
simple opening of the Avast’s UI process AvastUI.exe:

The picture above shows that in general everything works predictably - WRITE-rights are
“cut” (1). It’s a bit dangerous that they leave the VmRead (2) access right, but it’s not so easy
to exploit, so I decided to look further:

https://github.com/the-deniss/Vulnerability-Disclosures/tree/main/CVE-2021-45339
https://codemachine.com/articles/kernel_callback_functions.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obregistercallbacks
https://github.com/microsoft/windows-driver-samples/tree/main/filesys/miniFilter/
https://www.powershellgallery.com/packages/NtObjectManager/1.1.20
https://twitter.com/tiraniddo
https://www.mdsec.co.uk/2022/04/process-injection-via-component-object-model-com-irundowndocallback/

I tried to duplicate the restricted handle with permissions up to AllAccess (1) and
surprisingly it worked, although the trick is pretty trivial. Having received a handle with
write permissions, in the case of implementing self-defense based on Ob-Callbacks, nothing
restricts the attacker from performing destructive actions aimed at the protected process.
Because the access check and Ob-Callbacks only happen once when the handle is created,
and they aren’t involved on subsequent syscalls using acquired handle. Here you can inject,
but for the test it is enough just to terminate the process, which I did. The result was
unexpected - the process could not terminate (2), an access error occurred, although my
handle should have allowed the requested action to be performed.

It is obvious that somehow AV interferes with the termination of the process and prohibits it
from doing so. And this is done not at the level of handles by Ob-Callbacks, but already at the
API call. It means that TerminateProcess is intercepted somewhere. I checked to see if it was
a usermode hook and it turned out that it wasn’t. Strange and interesting…

0x03 Researching Syscall Hook

First of all, I studied the existing ways to intercept syscalls. This is widely known that system
call hooking is impossible on x64 systems since 2005 due PatchGuard. But obviously Avast
intercepts. Suddenly I missed something? I found a couple of interesting articles (here and
here), but all these tricks were undocumented and confirmed that in modern Windows
syscall intercepting isn’t a documented feature, and is formally inaccessible even for
antiviruses.

Then I traced an aforementioned syscall (TerminateProcess on AvastUI.exe) and found that
before each call to the syscall handler from SSDT, PerfInfoLogSysCallEntry call occurs,
which replaces the address of the handler on the stack (the handler is stored on the stack,
then PerfInfoLogSysCallEntry is called, and then it is taken off the stack and executed):

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess
https://www.alex-ionescu.com/?p=358
https://blog.can.ac/2019/10/19/byepg-defeating-patchguard-using-exception-hooking/

In the screenshot above, you can see that we are in the syscall handler (1), but even before
routing to a specific handler. The kernel code puts the address of the process termination
handler (nt!NtTerminateProcess) onto the stack at offset @rsp + 0x40h (2), then
PerfInfoLogSysCallEntry (3) is called, after returning from the call, the handler address is
popped back from the stack (4) and the handler is directly called (5) .

And if you follow the code further, then after calling PerfInfoLogSysCallEntry you can see
the following picture:

The address aswbidsdriver + 0x20f0 from the Avast driver (3) appears in the @rax register,
and instead of the original handler, the transition occurs to it (2).

This syscall interception technique is not similar to the mentioned above. But already now
we see that some “magic” happens in the function PerfInfoLogSysCallEntry and the name of
this function is unique enough to try to search for information on it in Google.

The first result in the search results leads to the InfinityHook project, which just implements
x64 system calls intercepts. What luck! 😉 You can read in detail how it works on the page
README.md, and here I’ll give the most important:

https://www.google.com/search?q=syscall+hook+PerfInfoLogSysCallEntry
https://github.com/everdox/InfinityHook
https://github.com/everdox/InfinityHook/blob/master/README.md

At +0x28 in the _WMI_LOGGER_CONTEXT structure, you can see a member called
GetCpuClock. This is a function pointer that can be one of three values based on how the
session was configured: EtwGetCycleCount, EtwpGetSystemTime, or PpmQueryTime

The “Circular Kernel Context Logger” context is searched by signature, and its pointer to
GetCpuClock is replaced in it. But there is one problem, namely: in the latest OS this code
doesn’t work. Why? The project has the issue, from which it can be understood that the
GetCpuClock member of the _WMI_LOGGER_CONTEXT structure is no longer a function
pointer, but is a regular flag. We can check this by looking at the memory of the object in
Windows 11, and indeed nothing can be changed in this class member. Instead of a function
pointer we can observe an unsigned 8-bit integer:

Then how do they take control? I set a
data access breakpoint on modifying the
address of the system handler inside
PerfInfoLogSysCallEntry (something like
“ba w8 /t @$thread @rsp + 40h”) to see what specific code is replacing the original syscall
handler:

The screenshot above shows that the code from the aswVmm module at offset 0xdfde (1)
replaces the address of the syscall handler on the stack (2) with the address aswbidsdriver +
0x20f0 (3). If we further reverse why this code is called in EtwpReserveTraceBuffer, we can
see that the nt!HalpPerformanceCounter + 0x70 handler is called when logging the ETW
event:

https://github.com/everdox/InfinityHook/issues/19

And accordingly, when checking the value by offset in this undocumented structure (there
are rumors that at the offset is a member QueryCounter of the structure), you can make sure
that there is the Avast’s symbol:

Now it became clear how the interception of syscalls is implemented. I searched the Internet
and found some public information about this kind of interception here and even the code
that implements this approach. In this code you can see how you can find the private
structure nt!HalpPerformanceCounter and if you describe it step by step, you get the
following:

1. Find the _WMI_LOGGER_CONTEXT of the Circular Kernel Context Logger ETW
provider by searching for the signature of the EtwpDebuggerData global variable in
the .data section of the kernel image. Further, the knowledge is used that after this
variable there is an array of providers and the desired one has an index of 2;

2. Next the provider’s flags are configured for syscall logging. And the flag is set to use
KeQueryPerformanceCounter, which in turn will call
HalpPerformanceCounter.QueryCounter;

3. HalpPerformanceCounter.QueryCounter is directly replaced. To do this, this variable
should be found: the KeQueryPerformanceCounter function that uses it is
disassembled and the address of the variable is extracted from it by signature. Next, a
member of an undocumented structure is replaced by a hook;

4. The provider starts if it was stopped before.

0x04 Self-Defense Bypass

Now we know that Avast implements self-defense by intercepting syscalls in the kernel and
understand how these interceptions are implemented. Inside the hooks, the logic is obviously
implemented to determine whether to allow a specific process to execute a specific syscall
with these parameters, for example: can the Maliscious.exe process execute
TerminateProcess with a handle to process AvastUI.exe. How can we overcome this defense?
I see 3 options:

1. Break the hooks themselves:
The replaced HalpPerformanceCounter.QueryCounter is called not only in
syscall handling, but also on other events. So the Avast driver somehow
distinguishes these cases. You can try to call a syscall in such a way that the Avast
driver does not understand that it is a syscall and does not replace it with its own
routine;
Or turn off hooking.

https://lesnik.cc/hooking-all-system-calls-in-windows-10-20h1/
https://github.com/fIappy/infhook19041

2. Find a bug in the Avast logic for determining prohibited operations (for example, find a
process from the list of exceptions and mimic it);

3. Use syscalls that are not intercepted.

The last option seems to be the simplest, since the developers definitely forgot to intercept
and prohibit some important function. If this approach fails, then we can try harder and try
to implement point 1 or 2.

To understand if the developers have forgotten some function, it is necessary to enumerate
the names of the functions that they intercept. If you look at the xref to the function
aswbidsdriver + 0x20f0, to which control is redirected instead of the original syscall handler
according to the screenshot above, you can see that its address is in some array along with
the name of the syscall being intercepted. It looks like this:

It is logical to assume that if you go through all the elements of this array, you can get the
names of all intercepted system calls. By implementing this approach, we get the following
list of system calls that Avast intercepts, analyzes, and possibly prohibits from being called:

NtContinue
NtSetInformationThread
NtSetInformationProcess
NtWriteVirtualMemory
NtMapViewOfSection
NtMapViewOfSectionEx
NtResumeThread
NtCreateEvent
NtCreateMutant
NtCreateSemaphore
NtOpenEvent
NtOpenMutant
NtOpenSemaphore
NtQueryInformationProcess
NtCreateTimer
NtOpenTimer
NtCreateJobObject
NtOpenJobObject
NtCreateMailslotFile
NtCreateNamedPipeFile
NtAddAtom
NtFindAtom
NtAddAtomEx
NtCreateSection
NtOpenSection
NtProtectVirtualMemory
NtOpenThread
NtSuspendThread
NtTerminateThread
NtTerminateProcess
NtSuspendProcess
NtNotifyChangeKey
NtNotifyChangeMultipleKeys

Let me remind you that initially we wanted to bypass self-defense, and for the purposes of a
quick demonstration, we tried to simply kill the process. But now back to the original plan -
injection. We need to find a way to inject that simply does not use the functions listed above.
That’s all! 😉 There are a lot of injection methods and there are many resources where they
are described. I found a rather old, but still relevant, list in the Elastic’s article “Ten process
injection techniques: A technical survey of common and trending process injection
techniques” (after completing this research, I found another interesting post “‘Plata o plomo’
code injections/execution tricks”, highly recommend post and blog). There are the most
popular injection techniques in Windows OS. So which of these can be applied so that it
works and Avast’s self-defense cannot prevent the code from being injected?

From the intercepted syscalls, it is clear that the developers seem to have read this article and
took care of mitigating the injection into processes. For example, the very first classical
injection “CLASSIC DLL INJECTION VIA CREATEREMOTETHREAD AND

https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.hexacorn.com/blog/2019/05/26/plata-o-plomo-code-injections-execution-tricks/

LOADLIBRARY” is impossible. Although the name of the technique contains only
CreateRemoteThread and LoadLibrary, WriteProcessMemory is still needed there, and this
is a bottleneck in our case - Avast intercepts NtWriteVirtualMemory, so the technique will
not work in its original form. But what if you do not write anything to the remote process, but
use the strings existing in it? I got the following idea:

1. Using the handle copying bug, get all access handle to process AvastUI.exe;
2. Find in the process memory (there is a handle and there are no interceptions of such

actions) a string representing the path where an attacker can write his module. It
seemed to me the most reliable way to look in PEB among the environment variables
for a string like “LOCALAPPDATA=C:\Users\User\AppData\Local”, so this path is
definitely writable and the memory will not be accidentally freed at runtime, i.e. the
exploit will be more reliable;

3. Copy module to inject to C:\Users\User\AppData\Local.dll;
4. Find the address of kernel32!LoadLibraryA (for this, thanks to KnownDlls, you don’t

even need to read the memory, although we can);
5. Call CreateRemoteThread (it is not intercepted) with procedure address of

LoadLibraryA and argument - string “C:\Users\User\AppData\Local”. Since the path
does not end with “.dll”, according to the documentation, LoadLibraryA itself adds a
postfix;

6. Profit!

If this scenario is expressed in PowerShell code, then the following will be obtained (in
addition to the previously mentioned NtObjectManager, the script uses the Search-Memory
cmdlet from the module PSMemory):

$avastUIs = Get-Process -Name AvastUI
$avastUI = $avastUIs[0]

$localAppDataStrings = $avastUI | Search-Memory -Values @{String='LOCALAPPDATA=' +
$env:LOCALAPPDATA}
$pathAddress = $localAppDataStrings.Group[0].Address + 'LOCALAPPDATA='.Length #[1]

Copy-Item -Path .\MessageBoxDll.dll -Destination ($env:LOCALAPPDATA + '.dll') #[2]

$process = Get-NtProcess -ProcessId $avastUI.Id
$process2 = Copy-NtObject -Object $process -DesiredAccess GenericAll #[3]

$kernel32Lib = Import-Win32Module -Path 'kernel32.dll'
$loadLibraryProc = Get-Win32ModuleExport -Module $kernel32Lib -ProcAddress 'LoadLibraryA' #
[4]

$thread = New-NtThread -StartRoutine $loadLibraryProc -Argument $pathAddress -Process
$process2 #[5]

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://www.powershellgallery.com/packages/PSMemory/1.1.0

And if we run this code, then… Nothing will happen. Rather, a thread will be created, it will
try to load the module, but it will not load it, and the worst thing is the loading code, based
on the call stack in ProcMon, is intercepted by aswSP.sys driver (Avast Self Protection) and
judging by the access to directories using CI.dll it tries to check the signature of the module:

It’s incredible! Avast not only uses undocumented syscall hooks, but also uses the
undocumented kernel-mode library CI.dll to validate the signature in the kernel. This is a
very brave and cool feature, but for us it brings problems: we either need to change the
injection scheme to fileless, or now look for a bug in the signature verification mechanism as
well. I chose the second.

0x05 Cached Signing Bug

AvastUI.exe is an electron based application and therefore has a specific process model –
one main process and several render processes:

And the fact is that in the case of an unsuccessful
injection attempt in the previous section, we tried to
inject code into the main process, but then, in the
process of thinking, I tried to restart the script by
specifying child processes as a target and… The
injection worked.

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.electronjs.org/docs/latest/tutorial/process-model

And if we then try to inject again into the main process, then we will succeed and no
signature checks will be performed:

It’s strange, but cool that the injection works. And this means that the article is nearing
completion. 😊 But I still want to understand what’s going on.

After loading the test unsigned library by the renderer process, Kernel Extended Attribute
$KERNEL.PURGE.ESBCACHE is added to the file:

$f = Get-NtFile -Path ($env:LOCALAPPDATA + '.dll') -Win32Path -Access GenericRead -ShareMode
Read
$f.GetEa()

Entries Count
------- -----
{Name: $KERNEL.PURGE.ESBCACHE - Data Size: 69 - Flags None} 1

https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/kernel-extended-attributes

This is a special attribute that can only be set from the kernel using the FsRtlSetKernelEaFile
function and is removed whenever the file is modified. CI stores in this attribute the status of
the signature verification, and if it is present, then the re-verification does not occur, but the
result of the previous one is reused. Thus, it is obvious that when the module is loaded into
the render process, there is a bug in the self-protection driver (probably aswSP.sys) (in this
article, we will not figure out which one, but the reader himself can look in ProcMon for the
callstack of the SetEAFile operation on the file and reverse why it is invoked) which causes a
Kernel Extended Attribute to be set on an unsigned file with validated signature information
for CI. And after that, this file can be loaded into any other process that uses the results of
the previous “signature check”. Let’s see what is written in the attribute (NtObjectManager
will help us here again):

$f.GetCachedSigningLevelFromEa()

Version : 3
Version2 : 2
USNJournalId : 133143369490576857
LastBlackListTime : 4/6/2022 2:40:59 PM
ExtraData : {Type DGPolicyHash - Algorithm Sha256 - Hash
160348839847BC9E112709549A0739268B21D1380B9D89E0CF7B4EB68CE618A7}
Flags : 32770
SigningLevel : DeviceGuard
Thumbprint :
ThumbprintBytes : {}
ThumbprintAlgorithm : Unknown

The signature of the unsigned file is marked as valid with a DeviceGuard (DG) level, so it’s
understandable why the main process loads it. In addition, this bug may allow unsigned code
to be executed on a DG system. Although code need to be already executed to trigger bugs,
this bug can be used as a stage in the exploitation chain for executing arbitrary code on the
DG system.

Summing up, the script for bypassing self-defense above is valid, but it must be applied not
to the AvastUI’s main process, but to one of the child ones. But if you still want to inject into
the main process, then it’s enough to first inject into any non-main AvastUI - this will set the
Kernel EA of the unsigned file to the value of the passed signature verification and after that
you can already inject this module into the main process - the presence of the attribute will
inform the process, that the file is signed and it will load successfully.

After getting the ability to execute code in the context of AvastUI, we have several
advantages:

1. A larger attack surface is opened on AV interfaces - only trusted processes have access
to many of them;

https://learn.microsoft.com/en-us/previous-versions/mt807493(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/kernel-extended-attributes#auto-deletion-of-kernel-extended-attributes

2. AV most likely whitelists all actions of the code in a trusted process, for example, you
can encrypt all files on the disk without interference;

3. The user cannot terminate the trusted process, and it may already be hosting malicious
code.

But more on that in future posts.

0x06 Conclusions

As a result of the work done, we have a bug in copying the process handle on the current
latest version of Avast Free Antivirus (22.11.6041 build 22.11.7716.762), we know that Avast
uses a kernel hook on syscalls, we know how they work on a fully updated Windows 11 22H2,
investigated what hooks Avast puts, developed an injection bypassing the interception
mechanism, discovered signature verification in the Avast core using CI.dll functions, found
a bug in setting the cached signing level, and using all this, we are finally able to inject code
into the trusted AvastUI.exe process protected by antivirus.

