DirectX/HyperV; An Offensive View

{§ fluidattacks.com/blog/offensive-hyperv-directx-1

A Black Hat talk follow up

1/15

https://fluidattacks.com/blog/offensive-hyperv-directx-1/

This year | attended Black Hat USA. The available talks were diverse, all of them inviting and
some of them particularly attractive for my current field of work, which is currently mainly
focused on advanced topics on Red Teaming and Exploit Development.

One of the talks | found most interesting was DirectX: The new Hyper-V Attack surface,
presented by Zhenhao Hong (@rthhh17). In that talk, four vulnerabilities were presented
(CVE-2021-43219, CVE-2022-21898, CVE-2022-21912 and CVE-2022-21918) regarding
bugs like Null Pointer Dereference, Arbitrary Address Read and Arbitrary Address Write,
which included a few lines of the PoC (Proof-Of-Concept) code to trigger each vulnerability.

Also, it was presented an overview of the architecture of Hyper-V DirectX components and a
proposed fuzzing methodology to find new vulnerabilities.

In this post(s) | will try to follow up with that research and overcome expected shortcomings
of the talk due to time restrictions:

o There is no public access to the PoC codes.

o There is no public access to the fuzzing artifacts.

e The infrastructure to perform research on that specific environment was also not
covered.

e Hyper-V — DirectX integration is a work-in-progress for Microsoft, so many of the
things mentioned in that talk are no longer working in the current version of Windows
11.

Setting up environment

We have already covered a post to set up a basic environment to perform remote kernel
debugging. It involved creating a virtual machine, enabling debug mode using a network
connection and plugging in the debugger. That could be done using a single computer.

This case is different. We need to debug a DirectX GPU adapter on a Windows machine
acting as hypervisor using Hyper-V with a VM running Linux. Enabling virtualized extensions
(VT-x) in a Windows VM can enable a nested Hyper-V, but the DirectX adapter will not be
visible. After testing different scenarios, | ended needing to use two laptops.

The first laptop will be the debuggee (host1). In that laptop, the latest version of Windows 11
was installed:

3/15

https://i.blackhat.com/USA-22/Thursday/US-22-Hong-DirectX-The-New-Hyper-V-Attack-Surface.pdf
https://twitter.com/rthhh17
https://fluidattacks.com/blog/windows-kernel-debugging/

PS C:\Users\aroldan> hostname
hostl
PS C:\Users\aroldan> Get—ComputerInfo | select WindowsBuildLabEx, OSVersion

WindowsBuildLabEx OsVersion

22000.1.amd6U4fre.co_release.210604-1628 10.0.22000

In that machine, WSL was installed along with Kali as guest VM:

PS C:\Users\aroldan> wsl kali-linux
Downloading: Kali Linux Rolling

Installing: Kali Linux Rolling

Kali Linux Rolling has been installed.

Launching Kali Linux Rolling...

PS C:\Users\aroldan=

The latest stable kernel used on WSL for the guest machines is 5.10.102.1-microsoft-
standard-wsL2. However, | wanted to use the latest version available of WSL, so | built it to
use it. To the date of the exercise, the latest version was 5.15.57. 1.

$ hostname
hostl

$ uname -a
Linux hostl 5.15.57.1—fluidattacks—standard-WwSL2

$ |

Make sure that you have partitionable GPUs on the host using Get -
VMHostPartitionableGpu:

PS C:\Users\aroldan> Get-VMHostPartitionableGpu

Name : \\?\PCI#VEN_8086&DEV_9BU1&SUBSYS_22BE1TAA&REV_02#381158365950810#{06U092b3~-625e-U3bf-9eb5-dcBU589
7dd593} \GPUPARAV

ValidPartitionCounts : {32}

PartitionCount : 32

TotalVRAM : 186600600600

AvailableVRAM : 1000000000

MinPartitionVRAM : e

MaxPartitionVRAM : 1000000000

OptimalPartitionVRAM : 1000000080

TotalEncode @ 184467UU8T73709551615

AvailableEncode 1 184467U4873789551615
MinPartitionEncode]

MaxPartitionEncode : 184467U48T73789551615
OptimalPartitionEncode : 18446744873709551615
TotalDecode : 1000000000
AvailableDecode : 1000000000
MinPartitionDecode]

In a past article, we could be able to perform remote debugging using a network connection.
| tried to do that, but failed because the physical network adapter didn't support debugging:

4/15

https://github.com/microsoft/WSL2-Linux-Kernel/releases
https://fluidattacks.com/blog/windows-kernel-debugging/

PS D:\poc> .\kdnet.exe

This Microsoft hypervisor supports using KDNET in guest VMs.

Metwork debugging is not supported on any of the NICs in this machine.
HDNET supports NICs from Intel, Broadcom, Realtek, Atheros, Emulex, Mellanox

and Cisco.

| had to use another approach. Luckily, Windows has several ways to be debugged. In this
case, | chose to use USB3 debugging. To do that, | had to:

Find a USB3 port on my debuggee laptop with debugging support. That could be done
using USBView from Windows SDK:

(B! USE Device Viewer

File Options Help

EI--- My Computer [Port3]
B33 |ISB xHC| Compliart Host Ct
: : HI.IB'
= _E;::ntHub I= Port U=er Connectable: vES
""" = [Port1] I= Port Debug Capable: ves
----- +=+ [Port2] Companion Port Humber: 2
..... §%, [Port] Companion Hub Symbolic Link Name: USB#ROOT _HUBIO#
R §%‘ [Port4] Protocols Supported:
& USB xHCI Compliant Host Ci lem It oo
E-mm RootHub USB 3.0: yes
----- +Z+ [Port1]
_____ 2 [Port?] ConnectionStatus: HoDeviceConnected

Enable debug options.

PS C:\Users\aroldan> bcdedit /dbgsettings usb targetname:fluidlab
The operation completed successfully.
PS C:\Users\aroldan> bcdedit /debug on

The operation completed successfully.

PS C:\Users\aroldan> bcdedit.exe /set busparams 45.8.8
The operation completed successfully.

PS C:\Users\aroldan=

Plug the debugger and the debuggee using a quality USB3 cable.

5/15

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-usb-3-0-debug-cable-connection

Using USB for debugging

Waiting to reconnect...

USB: Write opened

Connected to Windows 10 22000 x64 target at (Fri Aug 26 17:14:08.246 2022 (UTC - 5:00)), ptré4 TRUE
Kernel Debugger connection established.

EEE 2L S 2 3 S Path Ualidation Su"mary kEkER KR RRERRERRE

Response Time (ms) Location

Deferred srv¥

0K C:\ProgramData\Dbg\sym

Deferred srv*https://msdl.microsoft.com/download/symbols

Deferred srv*C: \ProgramData\Dbg\sym*https://msdl.microsoft.com/download/symbo

Deferred srv*c: \SYMBOLS*https://msdl.microsoft.com/download/symbols

Symbol search path is: srv*;c:\ProgramData\Dbg\sym;srv*Https://msdl.microsoft.com/download/symbols;srv*C:\ProgramDa
Executable search path is:

windows 10 Kernel version 22000 MP (8 procs) Free x64

Product: Winnt, suite: TerminalServer SingleUserTS

Edition build lab: 22e00.1.amdédfre.co release.210684-1628

Machine Name:

Kernel base = @xfffff8ee0 2aceeeed PsLoadedModulelList = exf{{ffs8ee” 2bg29e6be

Debug session time: Fri Aug 26 17:14:01.816 2022 (UTC - 5:00)

System Uptime: @ days ©:04:48.169

Break instruction exception - code 86800003 (first chance)
EEERRRERRE AR R R R R R R R R AR R R AR R R R R R KRR AR R R R R R R R R RN R R AR AR R R R Rk R R R KRR AR R E

In the end, the lab environment looked like this:

We are ready now!

An updated Hyper-V DirectX data flow

6/15

The following graph was presented by Zhenhao Hong (@rthhh17) which nicely describes the
DirectX components and how are they accessed by a VM on Hyper-V:

Hyper-V DirectX Component Architecture

Application \
Application

. Runtime Component g UserMode Driver

DirectX LKM DirectX graphics kernel Wgrapmcs
(dxgkrnl.ko) subsystem - MMS

(dxgkrnl.sys) (dxgmms1.sys &
e S

dxgmms2.sys)
VMBUS VMBUS

(hv_vmbus.ko) Component GPU driver

vmcall

Hypervisor (Ring -1)

The following is a detailed and updated flow of these interactions:

1

. There is a Linux driver called dxgkrnl.ko which exposes a set of 10CTL commands to

interact with the host's DirectX adapters.

. When a 10CTL is called, there is another driver called hv_vmbus. ko which uses the

VMBUS to create a packet and a bus channel between the VM, the hypervisor and the
kernel of the host machine.

. The 10CTL payload is contained in a structure called DXGADAPTER_VMBUS_PACKET which

contains the command (DXGK_VMBCOMMAND) and the command options to be sent.

. The host machine implements the receiving and processing counterpart in the

dxgkrnl.sys driver.

. The procedure dxgkrnl!vmBusProcessPacket is the VMBUS receiving method that

handles the DXGADAPTER_VMBUS_PACKET payload.

. If the DXGK_VMBCOMMAND is a global command (listed on enum

dxgkvmb_commandtype_global), a function pointer (indirect call) is set to a method with
the form dxgkrnl!DXG_HOST_GLOBAL_VMBUS::<command>, for example
dxgkrnl!DXG_HOST_GLOBAL_VMBUS: :VmBusDestroyProcess. Otherwise, the flow skips
to point 7.

. If the DXGK_VMBCOMMAND is not a global command packet, it is processed by

dxgkrnl!vmBusExecuteCommandInProcessContext which also uses indirect calls
(function pointers) to compute the target handling method of that specific 10CTL request
command. In this case, the handler has the form
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :<command>, for example
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice.

7/15

https://twitter.com/rthhh17
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture

8. The handling method casts the DXGADAPTER_VMBUS PACKET packet using
dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_<command>> (for example,
dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_DESTROYPROCESS>) to filter the data
as needed to this specific command handler.

9. The handler performs boilerplate checks and perform the desired action. In some
cases, it delivers the packet to a function with the pattern dxgkrnl!*Internal (for
example, dxgkrnl!SignalSynchronizationObjectInternal) or
dxgkrnl!Dxgk<command>Impl (for example, dxgkrnl!DxgkCreateDeviceImpl) which
has the required interfaces to deliver the packet to the MMS (Microsoft Media System)
components of DirectX that resides on the dxgmms1.sys and dxgmms2. sys drivers.

10. The MMS system is finally in charge to talk with the corresponding GPU driver, which
exposes the adapter that can either be virtual or physical.
11. In the end, the response is sent back to the VM via dxgkrnl!vmBusCompletePacket.

It's a complex process if you read it, but let's look at it in action. Let's see an example
performing only one command: Create Device. Here is the sample code.

Get started with Fluid Attacks' Red Teaming solution right now

8/15

/*

Hyper-V -> DirectX Interaction Sample Code

Compile as: cc -ggdb -0g -o samplel samplel.c

Author: Andres Roldan <aroldan@fluidattacks.com>

LinkedIn:

Twitter:
*/

#define _

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

https://www.linkedin.com/in/andres-roldan/
@andresroldan

GNU_SOURCE 1
<stdio.h>
<stdint.h>
<stdbool.h>
<stdlib.h>
<string.h>
<errno.h>
<sys/stat.h>
<fcntl.h>
<unistd.h>
<sys/ioctl.h>
"/home/aroldan/WSL2-Linux-Kernel-linux-msft-wsl-

5.15.y/include/uapi/misc/d3dkmthk.h"

int open_device() {
int fd;
fd = open("/dev/dxg", O_RDWR);

if (fd < 0) {

}

printf("Cannot open device file...\n");
exit(1);

printf("Opened /dev/dxg: 0x%x\n", fd);
return fd;

void create_device(int fd) {
int ret;
struct d3dkmt_createdevice ddd = { 0 };
struct d3dkmt_adapterinfo adapterinfo = { 0 };
struct d3dkmt_enumadapters3 enumada = { 0 };

enumada.adapter_count = Oxff;
enumada.adapters = &adapterinfo;

ret = ioctl(fd, LX_DXENUMADAPTERS3, &enumada);

if (ret) {
printf("Error calling LX_DXENUMADAPTERS3: %d: %s\n", ret,
exit(1);

}

printf("Adapters found: %d\n", enumada.adapter_count);

ddd.adapter = adapterinfo.adapter_handle;
printf("Adapter handle: 0x%x\n", ddd.adapter.v);

strerror(errno));

9/15

printf("Creating device\n");
ret = ioctl(fd, LX_DXCREATEDEVICE, &ddd);

if (ret) {
printf("Error calling LX_DXCREATEDEVICE: %d: %s\n", ret, strerror(errno));
exit(1);

}

printf("Device created: 0x%x\n", ddd.device);

int main() {
int fd;
struct d3dkmthandle device;

fd = open_device();
create_device(fd);
close(fd);

}

It's a straightforward code:

1. Opens a handle to /dev/dxg.
2. Uses that handle to enumerate the adapters available.
3. Creates the device handle.

The output on the console should be something like:

aroldan@hostl:~$ cc -ggdb -0g -o samplel samplel.c
aroldan@host1:~$./samplel

Opened /dev/dxg: 0x3

Adapters found: 2

Adapter handle: 0x40000000

Creating device

Device created: 0x40000000

Let's first look at the Linux side of things. First, I'm going to pause the execution on gdb at
*create_device+176 (samplel.c:43) which is when the 10CTL calling the command
LX_DXCREATEDEVICE is performed:

In file: /home/aroldan/samplel.c
38 printf("Adapters found: %d\n", enumada.adapter_count);
39
4e ddd.adapter = adapterinfo.adapter_handle;
41 printf("Adapter handle: 0x%x\n", ddd.adapter.v);
42 printf("Creating device\n");

ret - ioctl(fd, LX_DXCREATEDEVICE, &ddd);
uy if (ret) {
u5 printf("Error calling LX_DXCREATEDEVICE: %d: %s\n", ret, strerror(errno));
ue exit(1);
Ly }
us printf("Device created: 0x%x\n", ddd.device);

10/15

If we see the value of the variable ddd. device before the call, you should see something like
this:

print /x ddd.device

ret = ioctl(fd, LX_DXCREATEDEVICE, &ddd);

= Ox0,
= Ox0,
= Ox1

= Ox4OE0000

Now, let's check at the host running Windows. We should be able to witness the creation of
the device handler (0x40000000) on a dxgkrnl!vmBusCompletePacket response. We're

going to need to set a few breakpoints to check the flow. First, let's put a breakpoint at
dxgkrnl!VmBusProcessPacket

11/15

©: kd> bp dxgkrnl!VmBusProcessPacket

@: kd> g

Inspecting dxgkrnl!vmBusProcessPacket we can see at
dxgkrnl!vmBusProcessPacket+0x568 an indirect call being performed. This is where
dxgkrnl!vmBusProcessPacket handles DXGK_VMBCOMMAND global commands. You can find
indirect calls (function pointers) in kernel space because they are wrapped by calls to
_guard_dispatch_icall_fptr, which is added when the kernel is compiled with CFG.

Let's put another breakpoint there:

3: kd> u dxgkrnl!VmBusProcessPacket+@x568 L1
dxgkrnl!VmBusProcessPacket+0x568:

fffff804 47a53338 ff1532deddff call gword ptr [dxgkrnl! guard_dispatch_icall fptr
3: kd> bp dxgkrnl!VmBusProcessPacket+8x568

Now, let's put a breakpoint at dxgkrnl!vmBusExecuteCommandInProcessContext:

3: kd> bp dxgkrnl!VmBusExecuteCommandInProcessContext

In that function at dxgkrnl!vmBusExecuteCommandInProcessContext+0x1f0 we can also find
an indirect call being performed. We can set a new breakpoint in that place:

3: kd> u dxgkrnl!VmBusExecuteCommandInProcessContext+@x1fe L1
dxgkrnl!VmBusExecuteCommandInProcessContext+exlfe:

fffff800 6a62dc5¢c ffl5e35deff call gword ptr [dxgkrnl! guard_dispatch_icall_fptr
3: kd> bp dxgkrnl!VmBusExecuteCommandInProcessContext+@x1fe

Finally, a breakpoint at dxgkrnl!vmBusCompletePacket will be set:

4: kd> bp dxgkrnl!VmBusCompletePacket

We should now have five breakpoints as follows:

fffff800 6a632dde 0001 (ee0l1l) dxgkrnl!VmBusProcessPacket
fffff800 6a633338 eeel (eeel) dxgkrnl!VmBusProcessPacket+8x568

fffff8ee 6a62dabe 8eel (eeel) dxgkrnl!VmBusExecuteCommandInProcessContext
800 6a62dc5c 0001 (eeel) dxgkrnl!VmBusExecuteCommandInProcessContext+@x1fe
fffff800 6a31e278 0001 (ee0l1l) dxgkrnl!VmBusCompletePacket

I'm going to reference the steps described above in the following execution flow.

When we run the sample code again, it hits our first breakpoint (step 5):

12/15

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

@: kd> g
Breakpoint @ hit

dxgkrnl!VmBusProcessPacket:
fffff8ee 6a632dde 4653

When we resume the execution, the next breakpoint is hit at the
dxgkrnl!_guard_dispatch_icall fptr call, which is an indirect call to the first command's
handler. In this case, the handling function was resolved as
dxgkrnl!DXG_HOST_GLOBAL_VMBUS: :VmBusCreateProcess (step 6):

fffff8ee 6a632dde (eeel) dxgkrnl!VmBusProcessPacket
fffff800 6a633338 (eeel) dxgkrnl!VmBusProcessPacket+0x
fffff800" 6a62da6c (eee1l) dxgkrnl!VmBusExecuteCommandIn
fffff800" 6a62dc5c (eee1l) dxgkrnl!VmBusExecuteCommandIn
fffff800 6a31e278 (ee01) dxgkrnl!VmBusCompletePacket

4: kd> g

Breakpoint © hit
dxgkrnl!VmBusProcessPacket:
fffff800 6a632dde 4653

K1
e

If we resume the execution, a call to dxgkrnl!vmBusCompletePacket is performed to send to
the caller the result of the dxgkrnl!DXG_HOST_GLOBAL_VMBUS: :VmBusCreateProcess
command:

@: kd> t
dxgkrnl!DXG_HOST_GLOBAL_VMBUS: :VmBusCreateProcess:
fffff800 6a62af9e 488bc4 mov rax,rsp
@: kd> g

Breakpoint 4 hit
dxgkrnl!VmBusCompletePacket:
fffff80e 6a31e278 4883ec28

When we resume the execution twice, first the breakpoint at dxgkrnl!vmBusProcessPacket
is hit (step 5) as expected, but the next breakpoint hit is at
dxgkrnl!vmBusExecuteCommandInProcessContext, which means that the incoming
command is not a global command (step 7):

13/15

@: kd> g
Breakpoint @ hit

dxgkrnl!VmBusProcessPacket:
fffff8ee 6a632dde 4653 push rbx

2: kd> g

Breakpoint 2 hit
dxgkrnl!VmBusExecuteCommandInProcessContext:
fffff800 6a62dabc 4c8bdc mov rll,rsp

Now, when we resume the execution, the next breakpoint is hit at
dxgkrnl!vmBusExecuteCommandInProcessContext+0x1fe which contains the indirect call
resolved to a non-global command. In this case, we see the command we sent
(LX_DXCREATEDEVICE) for creating a device:

ffFfFSGB 6a31e278 4883ec28 rsp,28h
0: kd> g

Breakpoint @ hit

dxgkrnl!VmBusProcessPacket:

fffff800 6a632dde 4053 push rbx

2: kd> g

Breakpoint 2 hit
dxgkrnl!VmBusExecuteCommandInProcessContext:
fffff800 6a62dabc 4c8bdc mov ril,rsp

1]
I [—

In that method, at dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice+0x8d we
can see a call to dxgkrnl!CastTovmBusCommand<DXGKVMB_COMMAND_CREATEDEVICE> which
will extract the needed parts of the DXGADAPTER _VMBUS_PACKET (step 8):

2: kd> u dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice+@x8d
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice+@x8d:
fffff800° 6a62a29d e82228cfff call dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_ CREATEDEVICE>

Here's the decompiled code:

L_int64 __fastcall CastToVmBusCommand<DXGKVMB_COMMAND_CREATEDEVICE>(__int64 al)
{
if (*(_DWORD *)(al + 144) >= @x28u)
return *(_QWORD *)(al + 136);

LogPacketLengthError((struct DXGADAPTER_VMBUS_PACKET *)al, ©x28ui64d);
return 8i64;

}

14/15

Later on that function, at
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice+0x3b0, we can see a call to
dxgkrnl!DxgkCreateDeviceImpl which do the dirty job (step 9):

4: kd> u dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS::VmBusCreateDevice+8x3be L1

dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice+@x3b@O:

fffff804 47ad4a5ce e8b328e5ff call dxgkrnl!DxgkCreateDeviceImpl

And finally, when we continue the execution, the breakpoint at
dxgkrnl!vmBusCompletePacket is hit. According to this article, the second parameter of the
function dxgkrnl!vmBusCompletePacket is the data to be sent back to the caller (step 11). It
means that if we check the double word data pointed by the rdx register, we should see the
device handler (0x40000000) returned as we saw before in the Linux VM output:

2: kd> t

dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS: :VmBusCreateDevice:

fffff800 6a62a210 48895c24180 mov gword ptr [rsp+l1@h],rbx
2: kd> g

Breakpoint 4 hit

dxgkrnl!VmBusCompletePacket:

fffff800 6a31e278 4883ec28 rsp,28h
2: kd> dds rdx L1

fffffe@5 59645630 40000000

Great!

You can download the samplei.c file here.

Conclusion

The Hyper-V DirectX interaction is not officially documented. You can understand most of the
internals by reading the WSL code, performing reverse engineering of the Windows drivers
and doing kernel debugging. In the next article, we will see that most of the dxgkrnl
commands are not stateless and some of them depends on creating certain kernel objects
first. We will also see how to leverage this architecture using an offensive approach.

If you want to follow this series and receive our next blog posts, don't hesitate to subscribe to

our weekly newsletter.

15/15

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-fn_vmb_channel_packet_complete
https://fluidattacks.com/blog/offensive-hyperv-directx-1/sample1.c/
https://fluidattacks.com/product/sast/
https://fluidattacks.com/product/re/
https://fluidattacks.com/blog/windows-kernel-debugging/
https://fluidattacks.com/subscription/

