
1/15

DirectX/HyperV; An Offensive View
fluidattacks.com/blog/offensive-hyperv-directx-1

A Black Hat talk follow up

https://fluidattacks.com/blog/offensive-hyperv-directx-1/

2/15

3/15

This year I attended Black Hat USA. The available talks
were diverse, all of them inviting and
some of them
particularly attractive for my current field of work,
which is currently mainly
focused on advanced topics
on Red Teaming and Exploit Development.

One of the talks I found most interesting was
DirectX: The new Hyper-V Attack surface,
presented by Zhenhao Hong
(@rthhh17). In that
talk, four vulnerabilities were presented
(CVE-2021-43219,
CVE-2022-21898, CVE-2022-21912 and CVE-2022-21918)
regarding
bugs like Null Pointer Dereference, Arbitrary
Address Read and Arbitrary Address Write,
which included a
few lines of the PoC (Proof-Of-Concept) code to trigger
each vulnerability.

Also, it was presented an overview of the architecture
of Hyper-V DirectX components and a
proposed fuzzing
methodology to find new vulnerabilities.

In this post(s) I will try to follow up with that
research and overcome expected shortcomings
of the
talk due to time restrictions:

There is no public access to the PoC codes.
There is no public access to the fuzzing artifacts.
The infrastructure to perform research on that
specific environment was also not
covered.
Hyper-V → DirectX integration is a work-in-progress
for Microsoft, so many of the
things mentioned in that
talk are no longer working in the current version of Windows
11.

Setting up environment

We have already covered a post
to set up a basic environment to perform remote kernel
debugging. It involved creating a virtual machine,
enabling debug mode using a network
connection and
plugging in the debugger. That could be done using
a single computer.

This case is different. We need to debug a DirectX
GPU adapter on a Windows machine
acting as hypervisor
using Hyper-V with a VM running Linux. Enabling
virtualized extensions
(VT-x) in a Windows VM can
enable a nested Hyper-V, but the DirectX adapter will
not be
visible. After testing different scenarios,
I ended needing to use two laptops.

The first laptop will be the debuggee (host1).
In that laptop, the latest version of Windows 11
was
installed:

https://i.blackhat.com/USA-22/Thursday/US-22-Hong-DirectX-The-New-Hyper-V-Attack-Surface.pdf
https://twitter.com/rthhh17
https://fluidattacks.com/blog/windows-kernel-debugging/

4/15

In that machine, WSL was installed along with Kali
as guest VM:

The latest stable kernel used on WSL for the guest
machines is 5.10.102.1-microsoft-
standard-WSL2.
However, I wanted to use the latest version available
of WSL,
so I built it to
use it. To the date of the exercise,
the latest version was 5.15.57.1.

Make sure that you have partitionable GPUs on the host
using Get-
VMHostPartitionableGpu:

In a past article, we could
be able to perform remote debugging using a network connection.
I tried to do that, but failed because the physical network
adapter didn't support debugging:

https://github.com/microsoft/WSL2-Linux-Kernel/releases
https://fluidattacks.com/blog/windows-kernel-debugging/

5/15

I had to use another approach. Luckily, Windows has several
ways to be debugged. In this
case, I chose to use
USB3 debugging.
To do that, I had to:

Find a USB3 port on my debuggee laptop with debugging support.
That could be done
using USBView from Windows SDK:

Enable debug options.

Plug the debugger and the debuggee using a quality USB3 cable.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-usb-3-0-debug-cable-connection

6/15

In the end, the lab environment looked like this:

We are ready now!

An updated Hyper-V DirectX data flow

7/15

The following graph was presented by Zhenhao Hong
(@rthhh17) which
nicely describes the
DirectX components and how are
they accessed by a VM on Hyper-V:

The following is a detailed and updated flow of these
interactions:

1. There is a Linux driver called dxgkrnl.ko which
exposes a set of IOCTL commands to
interact with the host's
DirectX adapters.

2. When a IOCTL is called, there is another driver
called hv_vmbus.ko which uses the
VMBUS
to create a packet and a bus channel between the VM,
the hypervisor and the
kernel of the host machine.

3. The IOCTL payload is contained in a structure
called DXGADAPTER_VMBUS_PACKET which
contains the
command (DXGK_VMBCOMMAND) and the command options
to be sent.

4. The host machine implements the receiving and processing
counterpart in the
dxgkrnl.sys driver.

5. The procedure dxgkrnl!VmBusProcessPacket is the VMBUS
receiving method that
handles the DXGADAPTER_VMBUS_PACKET
payload.

6. If the DXGK_VMBCOMMAND is a global command (listed
on enum
dxgkvmb_commandtype_global), a function pointer
(indirect call) is set to a method with
the form
dxgkrnl!DXG_HOST_GLOBAL_VMBUS::<command>, for example
dxgkrnl!DXG_HOST_GLOBAL_VMBUS::VmBusDestroyProcess.
Otherwise, the flow skips
to point 7.

7. If the DXGK_VMBCOMMAND is not a global command packet,
it is processed by
dxgkrnl!VmBusExecuteCommandInProcessContext
which also uses indirect calls
(function pointers) to compute
the target handling method of that specific IOCTL
request
command. In this case, the handler has the
form
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS::<command>, for
example
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS::VmBusCreateDevice.

https://twitter.com/rthhh17
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture

8/15

8. The handling method casts the DXGADAPTER_VMBUS_PACKET
packet using
dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_<command>>
(for example,
dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_DESTROYPROCESS>)
to filter the data
as needed to this specific command
handler.

9. The handler performs boilerplate checks and perform
the desired action. In some
cases, it delivers the packet
to a function with the pattern dxgkrnl!*Internal
(for
example, dxgkrnl!SignalSynchronizationObjectInternal)
or
dxgkrnl!Dxgk<command>Impl
(for example, dxgkrnl!DxgkCreateDeviceImpl) which
has the
required interfaces to deliver the packet to the MMS
(Microsoft Media System)
components of DirectX that resides
on the dxgmms1.sys and dxgmms2.sys drivers.

10. The MMS system is finally in charge to talk with the
corresponding GPU driver, which
exposes the adapter that
can either be virtual or physical.

11. In the end, the response is sent back to the VM
via dxgkrnl!VmBusCompletePacket.

It's a complex process if you read it, but let's look at it
in action. Let's see an example
performing only one
command: Create Device. Here is the sample code.

Get started with Fluid Attacks' Red Teaming solution right now

9/15

/*
Hyper-V -> DirectX Interaction Sample Code

Compile as: cc -ggdb -Og -o sample1 sample1.c

Author: Andres Roldan <aroldan@fluidattacks.com>

LinkedIn: https://www.linkedin.com/in/andres-roldan/

Twitter: @andresroldan

*/

#define _GNU_SOURCE 1

#include <stdio.h>

#include <stdint.h>

#include <stdbool.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include "/home/aroldan/WSL2-Linux-Kernel-linux-msft-wsl-
5.15.y/include/uapi/misc/d3dkmthk.h"

int open_device() {

 int fd;

 fd = open("/dev/dxg", O_RDWR);

 if (fd < 0) {

 printf("Cannot open device file...\n");

 exit(1);

 }

 printf("Opened /dev/dxg: 0x%x\n", fd);

 return fd;

}

void create_device(int fd) {

 int ret;

 struct d3dkmt_createdevice ddd = { 0 };

 struct d3dkmt_adapterinfo adapterinfo = { 0 };

 struct d3dkmt_enumadapters3 enumada = { 0 };

 enumada.adapter_count = 0xff;

 enumada.adapters = &adapterinfo;

 ret = ioctl(fd, LX_DXENUMADAPTERS3, &enumada);

 if (ret) {

 printf("Error calling LX_DXENUMADAPTERS3: %d: %s\n", ret, strerror(errno));
 exit(1);

 }

 printf("Adapters found: %d\n", enumada.adapter_count);

 ddd.adapter = adapterinfo.adapter_handle;

 printf("Adapter handle: 0x%x\n", ddd.adapter.v);

10/15

 printf("Creating device\n");

 ret = ioctl(fd, LX_DXCREATEDEVICE, &ddd);

 if (ret) {

 printf("Error calling LX_DXCREATEDEVICE: %d: %s\n", ret, strerror(errno));

 exit(1);

 }

 printf("Device created: 0x%x\n", ddd.device);

}

int main() {

 int fd;

 struct d3dkmthandle device;

 fd = open_device();

 create_device(fd);

 close(fd);

}

It's a straightforward code:

1. Opens a handle to /dev/dxg.
2. Uses that handle to enumerate the adapters available.
3. Creates the device handle.

The output on the console should be something like:

aroldan@host1:~$ cc -ggdb -Og -o sample1 sample1.c

aroldan@host1:~$./sample1

Opened /dev/dxg: 0x3

Adapters found: 2

Adapter handle: 0x40000000

Creating device

Device created: 0x40000000

Let's first look at the Linux side of things.
First, I'm going to pause the execution on gdb
at
*create_device+176 (sample1.c:43) which is
when the IOCTL calling the command
LX_DXCREATEDEVICE
is performed:

11/15

If we see the value of the variable ddd.device
before the call, you should see something like
this:

After the IOCTL, we can see that the device handle
is now populated:

Now, let's check at the host running Windows. We
should be able to witness the creation of
the device
handler (0x40000000) on a dxgkrnl!VmBusCompletePacket
response.
We're
going to need to set a few breakpoints to check the
flow. First, let's put a breakpoint
at
dxgkrnl!VmBusProcessPacket

12/15

Inspecting dxgkrnl!VmBusProcessPacket we can see at
dxgkrnl!VmBusProcessPacket+0x568 an indirect call
being performed. This is where
dxgkrnl!VmBusProcessPacket
handles DXGK_VMBCOMMAND global commands. You can find
indirect calls (function pointers) in kernel space because
they are wrapped by calls to
_guard_dispatch_icall_fptr,
which is added when the kernel is compiled with
CFG.

Let's put another breakpoint there:

Now, let's put a breakpoint
at dxgkrnl!VmBusExecuteCommandInProcessContext:

In that function
at dxgkrnl!VmBusExecuteCommandInProcessContext+0x1f0
we can also find
an indirect call being performed. We
can set a new breakpoint in that place:

Finally, a breakpoint at dxgkrnl!VmBusCompletePacket
will be set:

We should now have five breakpoints as follows:

I'm going to reference the steps described above
in the following execution flow.

When we run the sample code again,
it hits our first breakpoint (step 5):

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

13/15

When we resume the execution, the next breakpoint is
hit at the
dxgkrnl!_guard_dispatch_icall_fptr call,
which is an indirect call to the first command's
handler.
In this case, the handling function was resolved
as
dxgkrnl!DXG_HOST_GLOBAL_VMBUS::VmBusCreateProcess (step 6):

If we resume the execution, a call
to dxgkrnl!VmBusCompletePacket is performed to send to
the caller the result of
the dxgkrnl!DXG_HOST_GLOBAL_VMBUS::VmBusCreateProcess
command:

When we resume the execution twice, first the breakpoint
at dxgkrnl!VmBusProcessPacket
is hit (step 5) as expected,
but the next breakpoint hit is
at
dxgkrnl!VmBusExecuteCommandInProcessContext, which means
that the incoming
command is not a global command (step 7):

14/15

Now, when we resume the execution, the next breakpoint is
hit at
dxgkrnl!VmBusExecuteCommandInProcessContext+0x1f0
which contains the indirect call
resolved to a non-global
command. In this case, we see the command we sent
(LX_DXCREATEDEVICE) for creating a device:

In that method,
at dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS::VmBusCreateDevice+0x8d
we
can see a call
to dxgkrnl!CastToVmBusCommand<DXGKVMB_COMMAND_CREATEDEVICE>
which
will extract the needed parts of
the DXGADAPTER_VMBUS_PACKET (step 8):

Here's the decompiled code:

15/15

Later on that function,
at
dxgkrnl!DXG_HOST_VIRTUALGPU_VMBUS::VmBusCreateDevice+0x3b0,
we can see a call to
dxgkrnl!DxgkCreateDeviceImpl which do
the dirty job (step 9):

And finally, when we continue the execution, the breakpoint
at
dxgkrnl!VmBusCompletePacket is hit. According to
this article,
the second parameter of the
function dxgkrnl!VmBusCompletePacket
is the data to be sent back to the caller (step 11). It
means
that if we check the double word data pointed by the
rdx register, we should see the
device handler (0x40000000)
returned as we saw before in the Linux VM output:

Great!

You can download the sample1.c file here.

Conclusion

The Hyper-V DirectX interaction is not officially documented.
You can understand most of the
internals by
reading the WSL code,
performing reverse engineering of the
Windows drivers
and doing
kernel debugging.
In the next article, we will see that most of the dxgkrnl
commands are not stateless and some of them depends on
creating certain kernel objects
first. We will also see how
to leverage this architecture using an offensive approach.

If you want to follow this series
and receive our next blog posts,
don't hesitate to subscribe to
our weekly newsletter.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-fn_vmb_channel_packet_complete
https://fluidattacks.com/blog/offensive-hyperv-directx-1/sample1.c/
https://fluidattacks.com/product/sast/
https://fluidattacks.com/product/re/
https://fluidattacks.com/blog/windows-kernel-debugging/
https://fluidattacks.com/subscription/

