
1/8

View all posts by 0x14c → July 26, 2022

Understanding DISM / Servicing Stack Interaction
bsodtutorials.wordpress.com/2022/07/26/understanding-dism-servicing-stack-interaction

Understanding DISM – /CheckHealth, /ScanHealth and /RestoreHealth

There appears to be much confusion about what the switches available for DISM actually do.

I’ve seen countless occasions where people have recommended forum users who are suffering

from Windows Update issues (and even BSODs) to run DISM /ScanHealth followed by

/RestoreHealth. Please stop! It’s pointless.

DISM is designed for servicing the Windows operating system and provides an option to

ensure that the Component Store is not corrupt. There is two main options for doing this:

/ScanHealth and /RestoreHealth. They actually almost do the same thing, however, the latter

option will actually attempt to perform repairs using the Windows Update servers as the

primary source. Although, typically, this is only for corrupted packages and payload files –

I’m yet to see a case whereby DISM was able to repair registry corruption, although, it usually

does an excellent job of finding it.

The /CheckHealth is the fastest option and simply checks for the presence of two different

store flags which are part of the CBS subkey. These are the Corruption value and

Unserviceable value. These two flags are queried by a CBS worker process called

TiWorker.exe.

/ScanHealth and /RestoreHealth do largely the same as each other and perform an extensive

check of the Component Store. If there is no corruption then the two previously mentioned

flags are cleared, otherwise they’re set to 0x1 or true. DISM does a good job of checking for

registry corruption within the COMPONENTS and CBS subkey, however, tends to struggle

when it comes to checking actual files. With this in mind, it is often best to run SFC as well

which will only check for file corruption within the WinSxS folder. SFC does attempt to

perform repairs if possible by checking the Backup directory of the WinSxS folder for a

suitable replacement file, if none can be found, then the file is reported as corrupted or

missing from the backup folder.

DISM and the Servicing Stack:

https://bsodtutorials.wordpress.com/2022/07/26/understanding-dism-servicing-stack-interaction/

2/8

Now, there is an important registry key which is queried just before DISM is executed and

that is the Image File Execution Options (IFEO) subkey. There is a particular value named

Debugger and if this is set to 0x1, the DISM will not start at all and will throw DISM Error

2.

reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\DismHost.exe" /v Debugger

Additionally, prior to the TrustedInstaller (Windows Module Installer) service starting, the

same subkey is queried but for the TrustedInstaller.exe instead.

Eventually, DismHost.exe looks up a few different subkeys under HKEY_CLASSES_ROOT,

there is quite a few important subkeys here and if they’re missing or corrupted, then DISM

will fail to run correctly.

HKEY_CLASSES_ROOT\Interface\{00020400-0000-0000-C000-000000000046}

 (Default) REG_SZ IDispatch

HKEY_CLASSES_ROOT\Interface\{00020400-0000-0000-C000-000000000046}\ProxyStubClsid32

 (Default) REG_SZ {00020420-0000-0000-C000-000000000046}

The default value is checked here and then used in conjunction with another subkey of the

same name.

HKEY_CLASSES_ROOT\CLSID\{00020420-0000-0000-C000-000000000046}

 (Default) REG_SZ PSDispatch

HKEY_CLASSES_ROOT\CLSID\{00020420-0000-0000-C000-000000000046}\InprocServer32

 (Default) REG_SZ C:\Windows\System32\oleaut32.dll

 ThreadingModel REG_SZ Both

The above two subkeys aren’t too interesting and quite standard. However, eventually

DismHost.exe will begin to start interacting with the servicing stack – this is commonly

where issues begin to arise. The servicing directory is queried to check which version of the

servicing stack is installed and active. The folder in question in the following:

%systemroot%\servicing\version\{SSU version}*_installed

The folder will always contain two files: amd64_installed and x86_installed. These can be

found in the corresponding SSU component folders within the WinSxS folder. DISM uses

these files to look up the appropriate servicing stack component to run.

On my server instance, it was looking up and creating a file handle to the wcp.dll file which is

part of the following component:

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\wcp.dll

3/8

The file attributes were examined and the file handle closed shortly afterwards; note, if this

folder is corrupt or missing in any way, then DISM will crash and refuse to run. The DISM

log will contain the following error message:

2022-07-21 15:07:10, Warning DISM DISM OS Provider: PID=6236 TID=6932 Failed to bind
the online servicing stack –
CDISMOSServiceManager::get_ServicingStackDirectory(hr:0x80070003)

2022-07-21 15:07:10, Error DISM DISM OS Provider: PID=6236 TID=6932 Unable to retrieve
servicing stack folder for DLL search path modification. –
CDISMOSServiceManager::SetDllSearchPath(hr:0x80070003)

2022-07-21 15:07:10, Error DISM DISM OS Provider: PID=6236 TID=6932 Unable to set the
DLL search path to the servicing stack folder. C:\Windows may not point to a valid Windows
folder. – CDISMOSServiceManager::SetWindowsDirectory(hr:0x80070003)

2022-07-21 15:07:10, Error DISM DISM.EXE: Failed to set the windows directory to
‘C:\Windows’. HRESULT=80070003

The active search path will be the same value as the one under Version subkey of the CBS

key. This will be mentioned further later.

DISM then eventually returns to the WinSxS folder mentioned previously and then opens the

CbsCore.dll.

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\CbsCore.dll

The following value is then queried:

reg query "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CMF\Config" /v SYSTEM

HKEY_CLASSES_ROOT\CLSID\{75207391-23F2-4396-85F0-8FDB879ED0ED}

 (Default) REG_SZ Component Based Servicing Session Proxy/Stub

HKEY_CLASSES_ROOT\CLSID\{75207391-23F2-4396-85F0-8FDB879ED0ED}\InProcServer32

 (Default) REG_EXPAND_SZ %SystemRoot%\servicing\CbsApi.dll

 ThreadingModel REG_SZ Both

The above two subkeys are then examined which seem to be used to set up a CBS session.

The second subkey points to the location of the CbsApi.dll.

4/8

HKEY_CLASSES_ROOT\CLSID\{752073A1-23F2-4396-85F0-8FDB879ED0ED}

 (Default) REG_SZ Component Based Servicing Session

 AppID REG_SZ {752073A2-23F2-4396-85F0-8FDB879ED0ED}

The AppId value is then examined which is used to look up the value data which

corresponds to the following subkey name:

HKEY_CLASSES_ROOT\AppID\{752073A2-23F2-4396-85F0-8FDB879ED0ED}

 (Default) REG_SZ Trusted Installer Service

 AccessPermission REG_BINARY
01000480840000009400000000000000140000000200700005000000000014000700000001010000000000

 LaunchPermission REG_BINARY
01000480700000008C000000000000001400000002005C0004000000000014000B00000001010000000000

 LocalService REG_SZ TrustedInstaller

As the LocalService value suggests, this subkey is related to the Trusted Installer Service

which is the principal owner of almost all the files and registry keys required for servicing the

operating system.

The services.exe then checks the services configuration for the Trusted Installer service

within the following registry subkey:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TrustedInstaller

 BlockTime REG_DWORD 0x2a30

 BlockTimeIncrement REG_DWORD 0x384

 Description REG_SZ @%SystemRoot%\servicing\TrustedInstaller.exe,-101

 DisplayName REG_SZ @%SystemRoot%\servicing\TrustedInstaller.exe,-100

 ErrorControl REG_DWORD 0x1

 FailureActions REG_BINARY
840300000000000000000000030000001400000001000000C0D4010001000000E093040000000000000000

 Group REG_SZ ProfSvc_Group

 ImagePath REG_EXPAND_SZ %SystemRoot%\servicing\TrustedInstaller.exe

 ObjectName REG_SZ localSystem

 PreshutdownTimeout REG_DWORD 0x36ee80

 ServiceSidType REG_DWORD 0x1

 Start REG_DWORD 0x3

 Type REG_DWORD 0x10

The TrustedInstaller service is then launched from the same directory as the ImagePath

value. The service then enumerates the values under the Version subkey:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\Version

The TrustedInstaller eventually checks the CBS log configuration by examining the following

four values:

5/8

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\EnableLog

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\Configuration\CBSLogMaxInMB

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\Configuration\CBSLogHardMaxI

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\Configuration\NumCBSPersistL

The following key is then created to indicate that the Trusted Installer service is actively

running:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\TiRunning

To ensure there is no pending reboots required or that one is actively taking place, the service

will query the following two values:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based
Servicing\RebootInProgress

HKLM\Software\Microsoft\Windows\CurrentVersion\Component Based
Servicing\RebootPending

The TrustedInstaller then examines the default values of the following subkeys:

HKEY_CLASSES_ROOT\CLSID\{8F5DF053-3013-4DD8-B5F4-88214E81C0CF}

 (Default) REG_SZ SFP Repair Class

 AppID REG_SZ {752073A2-23F2-4396-85F0-8FDB879ED0ED}

HKEY_CLASSES_ROOT\CLSID\{3C6859CE-230B-48A4-BE6C-932C0C202048}

 (Default) REG_SZ Sxs Store Class

 AppID REG_SZ {752073A2-23F2-4396-85F0-8FDB879ED0ED}

HKEY_CLASSES_ROOT\CLSID\{F556F9B2-C810-44A2-BA7A-3AB8C24E666D}

 (Default) REG_SZ GenValObject Outer Class

 AppID REG_SZ {D8D4249F-A8FB-44A7-8AA0-564E8C385BD6}

The AppId value for the final subkey corresponds to the software protection platform:

HKEY_CLASSES_ROOT\AppID\{D8D4249F-A8FB-44A7-8AA0-564E8C385BD6}

 (Default) REG_SZ Microsoft Software Protection Platform Admin Object
(outer)

 AccessPermission REG_BINARY
010014808800000098000000140000003000000002001C0001000000110014000100000001010000000000

 LaunchPermission REG_BINARY
010014808800000098000000140000003000000002001C0001000000110014000100000001010000000000

 LocalService REG_SZ TrustedInstaller

Another CBS session interface related subkey is then examined:

6/8

HKEY_CLASSES_ROOT\Interface\{F568C899-AF4F-4EAA-B12A-B8E5F1B219DE}

 (Default) REG_SZ ICbsSession8

HKEY_CLASSES_ROOT\Interface\{F568C899-AF4F-4EAA-B12A-B8E5F1B219DE}\ProxyStubClsid32

 (Default) REG_SZ {75207391-23F2-4396-85F0-8FDB879ED0ED}

The InProcServer32 value is then looked up from the same subkey mentioned earlier, this

is the same one as the default value for ProxyStubClsid32 subkey. The CbsApi.dll is then

has a file handle opened to by the Trusted Installer service:

%systemroot%\servicing\CbsApi.dll

The image is then loaded by the Trusted Installer, DismHost.exe then queries our CBS

session stub subkey from earlier a few times. After some time of DismHost.exe repeatedly

examining a CLSID subkey which doesn’t exist; we eventually get to a very important subkey

which will throw DISM Error 87 if it doesn’t exist or is corrupt:

HKEY_CLASSES_ROOT\CLSID\{0823B6F8-F499-4D5E-B885-EA9CB4F43B24}

 (Default) REG_SZ Component Based Servicing Worker

 AppID REG_SZ {8D15A4F3-1BE5-4120-8A4D-2EF92A5DD58D}

HKEY_CLASSES_ROOT\CLSID\{0823B6F8-F499-4D5E-B885-EA9CB4F43B24}\LocalServer32

 (Default) REG_EXPAND_SZ %SystemRoot%\winsxs\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\TiWorker.exe

This subkey is used to store the location of the TiWorker process which is a child process of

the Trusted Installer service. The TiWorker process will create a number of threads which are

sometimes referred to in the CBS log as a CBS worker. If this subkey is missing or corrupted

then you will experience DISM Error 87 or an error message stating that the /Cleanup-Image

switch is not recognised. Additionally, if you disable the Trusted Installer service, the same

error code will be produced. Thanks to Maxstar for discovering the cause of this error.

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\TiWorker.exe

The TiWorker.exe is then launched and the subsequent subkey is then examined:

HKEY_CLASSES_ROOT\AppID\{8D15A4F3-1BE5-4120-8A4D-2EF92A5DD58D}

 (Default) REG_SZ TiWorker

 AccessPermission REG_BINARY
01000480740000008400000000000000140000000200600004000000000014000700000001010000000000

 LaunchPermission REG_BINARY
01000480700000008C000000000000001400000002005C0004000000000014000B00000001010000000000

The AppId corresponds to the same AppId value as the Component Based Servicing

Worker CLSID subeky. The TiWorker thread then opens a file handle to the following file and

reads it.

https://www.sysnative.com/forums/members/maxstar.11816/

7/8

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\wdscore.dll

The TiWorker.exe eventually loads the CbsApi.dll from the servicing folder and the Trusted

Installer service once again examines two other subkeys:

HKEY_CLASSES_ROOT\Interface\{A70DBECC-3734-4B22-B2D1-648C0E43E177}

 (Default) REG_SZ ICbsWorker

HKEY_CLASSES_ROOT\Interface\{A70DBECC-3734-4B22-B2D1-648C0E43E177}\ProxyStubClsid32

 (Default) REG_SZ {75207391-23F2-4396-85F0-8FDB879ED0ED}

HKEY_CLASSES_ROOT\Interface\{365DE52E-EE7E-4975-AEC8-06588234BB3C}

 (Default) REG_SZ ITrustedInstallerService

HKEY_CLASSES_ROOT\Interface\{365DE52E-EE7E-4975-AEC8-06588234BB3C}\ProxyStubClsid32

 (Default) REG_SZ {75207391-23F2-4396-85F0-8FDB879ED0ED}

This leads to the TiWorker thread loads a few other images from the servicing component

within the WinSxS folder.

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\CbsCore.dll
%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\USERENV.dll
%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\profapi.dll

The TiWorker ensures that the following subkeys don’t exist:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\Configuration\DisablePSRL

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\DisableKernelTransactions

A few other images are then loaded:

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\dpx.dll

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\wcp.dll

%systemroot%\WinSxS\amd64_microsoft-windows-
servicingstack_31bf3856ad364e35_6.3.9600.17031_none_fa50b3979b1bcb4a\DrUpdate.dll

The service host (svchost.exe) then queries the following subkey:

HKEY_CLASSES_ROOT\CLSID\{D5978620-5B9F-11D1-8DD2-00AA004ABD5E}

 (Default) REG_SZ SENS Network Events

HKEY_CLASSES_ROOT\CLSID\{D5978620-5B9F-11D1-8DD2-00AA004ABD5E}\InprocServer32

 (Default) REG_EXPAND_SZ %systemroot%\system32\ES.DLL

 ThreadingModel REG_SZ Both

8/8

This causes the TiWorker to look for the following file which never appears to exist, seems to

be related to the Software Quality Management component:

%systemroot%\servicing\SQM*_all.sqm

The TiWorker then sets the session times for the latest CBS session and then begins to either

check for the corruption flags (/CheckHealth) or check the Component Store for corruption

(/ScanHealth).

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based
Servicing\SessionIdHigh

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\SessionIdLow

References:

https://docs.microsoft.com/en-us/answers/questions/179052/the-source-files-not-found-

running-dism-restorehea.html

Process Monitor Trace from Windows Server 2012 R2

https://docs.microsoft.com/en-us/answers/questions/179052/the-source-files-not-found-running-dism-restorehea.html

