
1/7

Creating Processes Using System Calls
coresecurity.com/core-labs/articles/creating-processes-using-system-calls

When we think about EDR or AV evasion, one of the most widespread methods adopted by

offensive teams is the use of system calls (syscalls) to carry out specific actions. This

technique is so common and effective simply because most AVs/EDR have userland hooks

to track and intercept requests userland processes make. However, we found that a key

userland API, CreateProcess, is still extensively used even in offensive tools to create

processes.

There has been some work on weaponizing NtCreateUserProcess so that it can be used on

defended environments, but the reality is that few of these projects out there have managed

to implement it in a way that is reliable and useful.

The problem is that creating the process is half the battle; if we try to create a notepad

process using the NtCreateUserProcess syscall, we will quickly realize that it dies

instantaneously. The reason for that is that if we want our newly created processes to

function normally, we first need to notify the Windows Subsystem about it. If we do not do

so, the application will segfault because it fails when calling the Win32 API.

When analyzing CreateProcessW WIN32 API call, it calls

kernelbase!CreateProcessInternalW, which is where all the process-creation logic takes

place. This includes notifying the Windows Subsystem about the newly created process. An

excerpt of the code making the notification can be seen in the following figure.

Image

The API ntdll!CsrClientCallServer is responsible for sending a message to the CSRSS

process, notifying it of the existence of the new process.

https://www.coresecurity.com/core-labs/articles/creating-processes-using-system-calls


2/7

The notification occurs after the process has been created (in suspended mode) and before it

is resumed. So, if we want to have a usable implementation of NtCreateUserProcess, we

need to handle the notification process.

At first glance, it might seem that calling ntdll!CsrClientCallServer would be the solution.

However, calling it is not that straightforward because it takes two complex structures as

parameters.

There are a few open-source projects that come very close to achieving this, including this

one and this one. Also, ReactOS contains a lot of extremely useful code snippets that relate

very closely to what Windows does.

After a lot of copying and reworking other people's code, reverse engineering, and

debugging, I managed to successfully call ntdll!CsrClientCallServer, register the new

process, and make the whole thing look like NtCreateUserProcess.

After doing that, I looked at the actual implementation of ntdll!CsrClientCallServer using

Ghidra.

Image

https://github.com/D0pam1ne705/Direct-NtCreateUserProcess
https://github.com/sslab-gatech/winnie


3/7

I found that it had the potential to be an interesting challenge to create my own version of

CsrClientCallServer. Additionally, doing this would also have another benefit: if the

NtAlpcSendWaitReceivePort syscall (line 65) was hooked I could bypass it.

The first obstacle I ran into is that the ntdll!CsrClientCallServer API uses two global

variables, CsrPortHandle and CsrPortMemoryRemoteDelta.

Both are set by ntdll!CsrpConnectToServer, which is in charge of making the first

connection to the CSRSS process. The technical details of how this is done are extremely

well explained in Windows CSRSS Write Up: Inter-process Communication (part 1/3) and



4/7

Windows CSRSS Write Up: Inter-process Communication (part 2/3) blog posts by J00ru.

In a nutshell, these two blogposts explain that Windows has a mechanism, named LPC,

which allows local processes to communicate with one another.

So, to communicate with the Csr, you first need to open a connection to a “named port” by

calling ntdll!NtSecureConnectPort. This will give you a port handle named CsrPortHandle.

To exchange large amounts of information, we need to create a section that will be mapped

in both our process and the Csr. The difference between the local address and the remote

address of this section is the CsrPortMemoryRemoteDelta.

I decided to implement ntdll!CsrpConnectToServer. However, after I implemented it I

noticed that when I called NtSecureConnectPort the CSRSS refused my connection request

with the status code 0xc0000041, which means

STATUS_PORT_CONNECTION_REFUSED.

There are two plausible explanations for why this happened. The first one is that I messed

up my implementation in some way and the second one is that the CSRSS knows that our

process already has an existing connection established, so it refuses to open a new one.

You can find my faulty implementation of CsrpConnectToServer here.

Either way, I decided to abandon that path, which meant that I needed to use the existing

connection to the Csr to move forward. In order to do so, I needed to know the values of

both CsrPortHandle and CsrPortMemoryRemoteDelta.

These two global variables have a fixed (relative) address inside the ntdll library, but that

address changes from version to version. There are (at least) two ways of obtaining this

address. The first option is to save the offset where they are stored for each version of ntdll,

but this is hardly a practical approach. the second option is to parse the code section of

ntdll, find instructions that reference these global variables, and, by using that reference,

find their absolute addresses. Since I was inspired by Revisiting a Credential Guard Bypass

by itm4n, I went with the latter.

Instead of scanning the entire code section of ntdll, I only searched the beginning of the

exported API that I was interested in. In this case, this was ntdll!CsrClientCallServer. I

simply looked for the bytes that preceded the relative address of the global variables, then

added the address of the next instructions (RIP) and got the absolute address of both global

variables.

As an example, take these two instructions inside of ntdll!CsrClientCallServer.

Image

https://twitter.com/j00ru
https://gist.github.com/S4ntiagoP/9b9a319fce0215cf1e5f1eee00bf6c90
https://itm4n.github.io/credential-guard-bypass/
https://twitter.com/itm4n


5/7

We would then just need to find the bytes { 0x48, 0x8b, 0x0d } within

ntdll!CsrClientCallServer, parse the next four bytes as an unsigned 32-bit number in little

endian (e9311600 -> 0x1631e9), and add that number to the address of the next instruction

(0x7ffb16a78a5f). This would give us the absolute address of CsrPortHandle, which is

0x7ffb16bdbc48.

After completing this step, I needed to deal with some more internal structures, which

turned out to be fairly easy to do because the code from ReacOS was of great help. After that

was done, I called the syscall NtAlpcSendWaitReceivePort, since I already had my own

implementation of CsrClientCallServer.

Finally, I decided to implement ntdll!CsrCaptureMessageMultiUnicodeStringsInPlace,

which is called by kernelbase!CreateProcessInternalW before calling

ntdll!CsrClientCallServer.

This meant finding some more global variables and dealing with some more structures.

Once again, ReacOS had almost all the code that I needed. Once I finished coding

CsrCaptureMessageMultiUnicodeStringsInPlace, I had my own working implementation of

kernelbase!CreateProcessInternalW, which relies exclusively on system calls and can be

used to spawn virtually any process—sweet!

I also included several useful features like spoofing the parent process id, specifying the

working directory, process parameters, and blocking non-Microsoft DLLs.

Just when I thought I was done, I read this article by Microsoft, Using Process Creation

Properties to Catch Evasion Techniques.

To quickly summarize, it explained that the kernel-based process creation callback routine,

which EDRs use to be notified of every new process so they can inspect it, is not actually

triggered when the process is created, but rather when the first thread is inserted in the

process.

Because the syscall NtCreateUserProcess does most of the work required to create a new

process within the kernel, it also creates the first thread. This means that EDRs are notified

of the new process before the syscall finishes.

The article also explains that the legacy syscall, named NtCreateProcessEx, does not create

the initial thread, which means it doesn’t trigger the callback right away. This allows several

techniques like process doppelgänging, process herpaderping and process ghosting.

https://github.com/reactos/reactos/blob/3a72a52ce886c5a1bfa1e87b1a9b759e85a5c3d4/dll/ntdll/csr/connect.c#L365
https://github.com/reactos/reactos/blob/3a72a52ce886c5a1bfa1e87b1a9b759e85a5c3d4/dll/ntdll/csr/capture.c#L292
https://www.microsoft.com/security/blog/2022/06/30/using-process-creation-properties-to-catch-evasion-techniques/


6/7

Since there are already several high-quality implementations of all the techniques described

above, I decided to instead focus on creating a regular process using this specific syscall and

registering it with the Csr as before.

When you create a process using this syscall, you are responsible for, among other things,

setting the process parameters. I followed the same approach as most public

implementations and created the RTL_USER_PROCESS_PARAMETERS structure locally

and then wrote it to the remote process. But to actually make it work, I noticed you need to

adjust all the pointers that exist within that structure so that they make sense in the context

of the new process instead of our preexisting one. Once that small caveat is sorted out, the

implementation is standard. Luckily, registering the new process with the Csr is the same as

when using NtCreateUserProcess.

You can find the final implementation here.

Image

Image

Conclusion

The hard truth is that kernelbase!CreateInternalProcessW is a very complex function that

handles a lot of edge cases that I don’t deal with. Consequently, every custom

implementation of it will always have limitations. It is up to you if you want to operate

https://github.com/helpsystems/CreateProcess


7/7

within those limitations in order to increase your opsec capabilities. It should be considered

as another offensive resource for well-defended networks where the use of CreateProcess is

not an option.








