
1/8

July 5, 2022

Understanding the Basics
jsecurity101.medium.com/wmi-internals-part-1-41bb97e7f5eb

Jonathan Johnson

Jul 5

·

8 min read

·

WMI Internals Part 1

Recently I have taken up an interest in WMI internals and thought I would write a blog series

on some of my findings. This first release will cover the fundamentals of WMI and how to

track back WMI activity to the WMI provider host process (WmiPrvse.exe), the executable

responsible for executing WMI activity. This post is meant to give the information needed to

understand part 2 of this series, which will cover the relationship between WMI and COM.

That being said, this post will not cover everything WMI related — like permanent WMI

event subscriptions, for example.

A lot of this information isn’t new, so I would like to give credit early and direct everyone to

the section below. As those write-ups/conversations helped my understanding of this

technology tremendously.

WMI Vocabulary

Microsoft wanted to have their own technology that allowed them to gather information and

manage assets across the enterprise, to accomplish this they implemented their own version

of Web-Based Enterprise Management which they called Windows Management

Instrumentation (WMI). WMI allows users and administrators to obtain information about

objects, which in turn give information about things like the environment, computer,

processes, etc. WMI also allows administrators to create their own objects, i.e. create a

process, services, etc. In order to be successful at this, WMI uses the Common Information

Model (CIM), which is a standard to represent various objects like the ones mentioned above.

These objects are considered “managed objects”.

WMI has 4 main components:

https://jsecurity101.medium.com/wmi-internals-part-1-41bb97e7f5eb
https://jsecurity101.medium.com/?source=post_page-----41bb97e7f5eb--------------------------------
https://jsecurity101.medium.com/?source=post_page-----41bb97e7f5eb--------------------------------
https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/common-information-model

2/8

COM servers that monitor managed objects. consist of a DLL (COM server) and a

(MOF) file which serves as a definition for a WMI class. These providers are typically

DLLs and can be found in C:\Windows\System32\wbem*

WMI class that represents objects like — processes, services, operating system, etc.

This is the WMI service (Winmgmt). This service holds two components:

1. The CIM Object Manager (CIMOM). This component handles the connection between

management applications and providers. This is considered the WMI Core.

2. The on-disk database “store” is known as the WMI/CIMOM Object Repository. The

repository is organized by WMI namespaces. These namespaces look like root\cim2

and hold a collection of providers. The repository can be found at:

C:\Windows\System32\wbem\Repository\

The client application that interacts with the WMI infrastructure. This can be a regular

binary (EXE), a VBScript, a PowerShell script, etc. We will see an example of this within

the walkthrough.

Before moving on I would like to go back to the WMI service (Winmgmt) and speak as to how

it is implemented and how tasks are carried out.

The WMI service (WinMgmt) is stored within wmisvc.dll which is loaded and runs inside of

svchost.exe. We can see this if we look at WinMgmt configuration within the registry:

As well as confirm this within Process Explorer:

3/8

You might have seen another WMI binary on disk called WmiPrvSe (WMI Provider Host).

This binary is used to load the correct COM servers (WMI providers) so that it may execute

the task it was instructed to. This binary is launched via

C:\Windows\system32\wbem\wmiprvse.exe -secured -Embedding, where its

parent is a svchost process with the CommandLine of:

C:\Windows\system32\svchost.exe -k DcomLaunch -p. This svchost is launched

under services.exe.

An example of how a WMI call is made at a high level:

WMI service (wmisvc.dll) is launched within the SVCHOST process via ()

Management application (powershell.exe) executes WMI method

WmiPrvSe is launched via , under the DCOMLaunch svchost process

The WMI services loads the appropriate WMI provider into WmiPrvSe

WmiPrvSe executes the function expressed by the method

4/8

There is a lot more that happens underneath the hood of WMI that include COM/RPC.

Please see the Windows Internals book Part 2, specifically Chapter 10 for more information

on this.

WMI Walkthrough

For me, WMI made a lot more sense after playing with the various cmdlets exposed through

Windows. Let’s do that.

First we need to identify which WMI class/method we want to interact with. Luckily there are

two different WMI cmdlet types exposed to us via PowerShell. The WMI cmdlets and the

CIM cmdlets. The CIM cmdlets are the “newer” and more preferred way of interacting with

WMI, but the WMI cmdlets still hold their place, which we will see later.

I want to see if there is a WMI class that allows me to create a process. To do that I am going

to see if there are any classes that expose a method that contains Create in it, to do so I run

the following:

PS > Get-CimClass -MethodName *Create*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties----------
-- --------------- ------------------Win32_Process
{Create, Terminat... {Caption, Description, InstallDate, Name...}Win32_BaseService
{StartService, St... {Caption, Description, InstallDate, Name...}Win32_Service
{StartService, St... {Caption, Description, InstallDate, Name...}…

Here we can see that there is a WMI class called that holds a method called . This classes

provider lives within the namespace. However; we currently don’t know what the WMI

provider is, so let’s find that out next.

WMI providers, as mentioned above, are essentially just COM servers. Which means that

they are stored in the registry behind a class identifier (CLSID). By obtaining a provider

instance and filtering on the WMI class we are curious about, we may pull that CLSID out.

{d63a5850-8f16-11cf-9f47-00aa00bf345c}

We can then search for that CLSID within the HCKR hive in the registry:

C:\WINDOWS\system32\wbem\cimwin32.dll

Great, now we have a lot of great information about the WMI class and method we want to

invoke:

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/07-working-with-wmi?view=powershell-7.2
https://docs.microsoft.com/en-us/windows/win32/wmisdk/--win32provider

5/8

WMI Class: Win32Process

Method: Create

Provider: cimwin32.dll

Namespace: ROOT/cimv2

Lastly, I need to see the parameters I need to pass through in order to successfully create the

process. There are a couple of ways to achieve this but let’s first see if we can leverage the

WMI cmdlets to give us this information.

Name CimType Qualifiers
ReferenceClassName---- ------- ----------
------------------CommandLine String {ID, In,
MappingStrings}CurrentDirectory String {ID, In,
MappingStrings}ProcessStartupInformation Instance {EmbeddedInstance, ID, In,
MappingStrings}ProcessId UInt32 {ID, MappingStrings, Out}

Great, here I can see that there are 3 “In” parameters (CommandLine,

CurrentDirectory, ProcessStartupInformation) and 1 “Out” parameter (ProcessId).

To get more information about the parameters I need to pass to a method I typically open up

the provider’s MOF file. In this case C:\Windows\System32\wbem\cimwin32.mof .

After getting to the point of where the Win32_Process class is defined we see a lot of great

information:

[Dynamic,Provider("CIMWin32") :
ToInstance,SupportsCreate,CreateBy("Create"),SupportsDelete,DeleteBy("DeleteInstance")
: ToInstance,UUID("{8502C4DC-5FBB-11D2-AAC1-006008C78BC7}") : ToInstance]class
Win32_Process : CIM_Process{[Read : ToSubclass,Privileges{"SeDebugPrivilege"} :
ToSubclass,MappingStrings{"Win32API|Tool Help Structures|MODULEENTRY32|szExePath"} :
ToSubclass] string ExecutablePath;[Read : ToSubclass,Privileges{"SeDebugPrivilege"} :
ToSubclass,MappingStrings{"Win32|WINNT.H|QUOTA_LIMITS|MaximumWorkingSetSize"} :
ToSubclass] uint32 MaximumWorkingSetSize;[Read :
ToSubclass,Privileges{"SeDebugPrivilege"} :
ToSubclass,MappingStrings{"Win32|WINNT.H|QUOTA_LIMITS|MinimumWorkingSetSize"} :
ToSubclass] uint32 MinimumWorkingSetSize;...

Firstly, there are a lot of read instructions, which showcases that we can probably use this

same class to get a process object by instantiating the Win32_Process class. We will do this

later, what we care about now however is the Create method. We see there is a “Constructor”

qualifier which means that there is a call that will create an instance of this class. Looking at

the information for the Constructor method, we see it refers to Create.

https://docs.microsoft.com/en-us/windows/win32/wmisdk/standard-qualifiers

6/8

[Constructor,Static,Implemented,Privileges{"SeAssignPrimaryTokenPrivilege",
"SeIncreaseQuotaPrivilege", "SeRestorePrivilege"} : ToSubclass,ValueMap{"0", "2",
"3", "8", "9", "21", ".."} : ToSubclass,MappingStrings{"Win32API|Process and Thread
Functions|CreateProcess"} : ToSubclass] uint32 Create([In :
ToSubclass,MappingStrings{"Win32API|Process and Thread Functions|lpCommandLine "} :
ToSubclass] string CommandLine,[In : ToSubclass,MappingStrings{"Win32API|Process and
Thread Functions|CreateProcess|lpCurrentDirectory "} : ToSubclass] string
CurrentDirectory,[In : ToSubclass,MappingStrings{"WMI|Win32_ProcessStartup"} :
ToSubclass] Win32_ProcessStartup ProcessStartupInformation,[Out :
ToSubclass,MappingStrings{"Win32API|Process and Thread
Functions|CreateProcess|lpProcessInformation|dwProcessId"} : ToSubclass] uint32
ProcessId);

This definition has the same information that the WMI cmdlet holds, except it says that one

parameter (ProcessStartupInformation) is passed in via a Win32_ProcessStartup

instance. Taking a look at this class, I can see that I can create my own instance of this class,

specify a wide range of ProcessStartup options. One that stood out was the parameter.

[Abstract,Locale(1033) : ToInstance,UUID("{8502C4DB-5FBB-11D2-AAC1-006008C78BC7}") :
ToInstance]class Win32_ProcessStartup : Win32_MethodParameterClass

{

[Write : ToSubclass,MappingStrings{"Win32API|Process and Thread
Structures|STARTUPINFO|wShowWindow"} : ToSubclass] uint16 ShowWindow;...class
Win32_ProcessStartup : Win32_MethodParameterClass{[Description("The ShowWindow
property specifies how the window is to be displayed to the user.") : Amended
ToSubclass,Values{"SW_HIDE", "SW_NORMAL", "SW_SHOWMINIMIZED", "SW_SHOWMAXIMIZED",
"SW_SHOWNOACTIVATE", "SW_SHOW", "SW_MINIMIZE", "SW_SHOWMINNOACTIVE", "SW_SHOWNA",
"SW_RESTORE", "SW_SHOWDEFAULT", "SW_FORCEMINIMIZE"} : Amended ToSubclass] uint16
ShowWindow;

There is an option to specify Sw_Hidden (or value 0). Let’s do that because I figured that

starting a hidden notepad process is what any regular hacker would do.

First let’s create a Win32_ProcessStartup instance with the hidden parameter and pass it in.

Lastly, let’s invoke the Create method:

ProcessId ReturnValue PSComputerName— — — — — — — — — — — — — — — — — —2432 0

After invoking this, we can see that this process was spawned under WmiPrvse.exe:

If we look at the WmiPrvse.exe binary, we see that the Win32_Process provider DLL —

cimwin32.dll was loaded:

7/8

Before we close out, remember earlier when we saw that we could get a WMI instance of a

process via Win32_Process as well? Let’s see if we can do that to get information about our

newly created notepad process:

ProcessId Name HandleCount WorkingSetSize VirtualSize — — — — — — — — — — — — — — — —
— — — — — — — — — -15444 notepad.exe 190 13496320 2203470827520

You can also achieve this via Get-WMIObject :

8/8

Conclusion:

During this post I wanted to set a baseline of knowledge that will carry on to other posts in

this series “WMI Internals”. I find this important so that everyone has the same vocabulary

and basic understanding of how things work. What I showed today wasn’t anything new but

will be showcased in less basic examples in the following posts. There were some things

purposefully left out for WMI, but I urge everyone to go to the resource section and check out

the work of some phenomenal researchers. Thanks for tuning in, part 2 will dive deeper into

WMI and COM relationships.

Resources:

