Understanding the Basics

(%) jsecurity101.medium.com/wmi-internals-part-1-41bb97e7f5eb

July 5, 2022

Foosy

J onthan Johnson

Jul 5

8 min read

WMI Internals Part 1

Recently I have taken up an interest in WMI internals and thought I would write a blog series
on some of my findings. This first release will cover the fundamentals of WMI and how to
track back WMI activity to the WMI provider host process (WmiPrvse.exe), the executable
responsible for executing WMI activity. This post is meant to give the information needed to
understand part 2 of this series, which will cover the relationship between WMI and COM.
That being said, this post will not cover everything WMI related — like permanent WMI
event subscriptions, for example.

A lot of this information isn’t new, so I would like to give credit early and direct everyone to
the section below. As those write-ups/conversations helped my understanding of this
technology tremendously.

WMI Vocabulary

Microsoft wanted to have their own technology that allowed them to gather information and
manage assets across the enterprise, to accomplish this they implemented their own version
of Web-Based Enterprise Management which they called Windows Management

Instrumentation (WMI). WMI allows users and administrators to obtain information about
objects, which in turn give information about things like the environment, computer,
processes, etc. WMI also allows administrators to create their own objects, i.e. create a
process, services, etc. In order to be successful at this, WMI uses the Common Information
Model (CIM), which is a standard to represent various objects like the ones mentioned above.
These objects are considered “managed objects”.

WMI has 4 main components:

1/8

https://jsecurity101.medium.com/wmi-internals-part-1-41bb97e7f5eb
https://jsecurity101.medium.com/?source=post_page-----41bb97e7f5eb--------------------------------
https://jsecurity101.medium.com/?source=post_page-----41bb97e7f5eb--------------------------------
https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/common-information-model

e COM servers that monitor managed objects. consist of a DLL (COM server) and a
(MOF) file which serves as a definition for a WMI class. These providers are typically
DLLs and can be found in C:\Windows\System32\wbem*

e WMI class that represents objects like — processes, services, operating system, etc.

e This is the WMI service (Winmgmt). This service holds two components:

1. The CIM Object Manager (CIMOM). This component handles the connection between
management applications and providers. This is considered the WMI Core.

2. The on-disk database “store” is known as the WMI/CIMOM Object Repository. The
repository is organized by WMI namespaces. These namespaces look like root\cim2
and hold a collection of providers. The repository can be found at:
C:\Windows\System32\wbem\Repository\

The client application that interacts with the WMI infrastructure. This can be a regular
binary (EXE), a VBScript, a PowerShell script, etc. We will see an example of this within
the walkthrough.

Before moving on I would like to go back to the WMI service (Winmgmt) and speak as to how
it is implemented and how tasks are carried out.

The WMI service (WinMgmt) is stored within wmisve.dll which is loaded and runs inside of
svchost.exe. We can see this if we look at WinMgmt configuration within the registry:

esyWinmgmt
#~ || Name Type Data

a|-“|(Defaul’:} REG_SZ (value not set)
ab|DependOnService REG MULTI SZ RPCSS
?P\IDescrEpI\on REG_SZ @%Systemroot¥%\system32\whemywmisve.dll,-204
?h]Disp\ayName REG_SZ @%Systemroot¥%hsystem32\wbemiywmisve.dll,-205
S'uﬂErrchomro\ REG_DWORD 0x00000000 (0)
f\'_'li‘]Fa\IureAd\ons REG_BINARY 80 51 01 00 00 00 00 00 00 00 00 00 03 00 00 00 14 00 00 00 01 00 00 00 <0 d4 01 00 01 00 00 00 €0 93 04 00 00 00 00 00 G0 00 00 00
2blimagePath REG_EXPAND_SZ Ysystemrootio\system32\svchost.exe -k netsves -p
%b‘IObjectName REG_SZ localSystem
_Sﬁi]SemceSidType REG_DWORD 0x00000001 (1)
i) start REG_DWORD 0x00000002 (2)
Eﬁ\l.‘waemHardle... REG_DWORD Ox0000001c (28)
i) SveMemMidLimit... REG_DWORD 0x00000014 (20)
‘{%{JSVCMemS{JﬂleL.. REG_DWORD 0x0000000b (11)
1|Type REG_DWORD 0x00000020 (32)

As well as confirm this within Process Explorer:

2/8

[swchost exe 14352 K 32732K 2336 Host Process for Windows 5... Microsoft Corporation NT AUTHORITY\SYSTEM

== bt AR CIE W RO AT W

INNA Heot B four Wind, =4 % H o rati T AL ITHARITY] O A1 SERVICE

Mame Descriction Company Name

Path

E R EA AL a0 000 T

= F ¥ I 3 ¥ 3 3 = = < = C L OO0 @N®®e 302 YW oo 33 =033

8 sychost.exe:2996 (netsves -p -s Winmgmt) Properties

Image Performance Performance Graph Disk and Metwork GPU Graph Services Threads TCP/IP Security Environment Job Strings

Image File

Host Process for Windows Services

Version: 10.0. 19041, 1565
Build Time: Wed Aug 6 17:26:46 1986
Path:

= O X

| C:\Windows\System32\svchost.exe

| Explore

Command line:

| Cr\Windows'system32\svchost.exe + netsves -p - Winmamt

Current directory:

| C:\Windows\System32Y

Autostart Location:

| HELM\SystemCurrentControlSet\Services\WpnUserService_a2568

| Explore

Farent: services.exe(556)
User: NT AUTHORITY\SYSTEM
Started: 5:1%19AM 6/24/2022 Image: 64-bit

Comment: | | |

VirusTotal: | | Submit

Data Execution Prevention (DEP) Status: Enabled (permanent)
Address Space Load Randomization: High-Entropy, Bottom-Up
Control Flow Guard: Enabled

Enterprise Context: N/A

Stack Protection: Disabled

Verify
Ering to Front

Kill Process

Cancel

You might have seen another WMI binary on disk called WmiPrvSe (WMI Provider Host).
This binary is used to load the correct COM servers (WMI providers) so that it may execute

C\Windows\System32whem\Willsve.di

the task it was instructed to. This binary is launched via

C:\Windows\system32\wbem\wmiprvse.exe -secured -Embedding, where its

parent is a svchost process with the CommandLine of:

C:\Windows\system3z2\svchost.exe -k DcomLaunch -p. This svchost is launched

under services.exe.

An example of how a WMI call is made at a high level:

WMI service (wmisve.dll) is launched within the SVCHOST process via ()

e Management application (powershell.exe) executes WMI method

WmiPrvSe is launched via , under the DCOMLaunch svchost process
The WMI services loads the appropriate WMI provider into WmiPrvSe
WmiPrvSe executes the function expressed by the method

3/8

There is a lot more that happens underneath the hood of WMI that include COM/RPC.
Please see the Windows Internals book Part 2, specifically Chapter 10 for more information
on this.

WMI Walkthrough

For me, WMI made a lot more sense after playing with the various cmdlets exposed through
Windows. Let’s do that.

First we need to identify which WMI class/method we want to interact with. Luckily there are
two different WMI cmdlet types exposed to us via PowerShell. The WMI cmdlets and the
CIM cmdlets. The CIM cmdlets are the “newer” and more preferred way of interacting with
WMI, but the WMI cmdlets still hold their place, which we will see later.

I want to see if there is a WMI class that allows me to create a process. To do that I am going
to see if there are any classes that expose a method that contains Create in it, to do so I run
the following;:

PS > Get-CimClass -MethodName *Create*

NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties----------
e e Win32_Process
{Create, Terminat... {Caption, Description, InstallDate, Name...}Win32_BaseService
{StartService, St... {Caption, Description, InstallDate, Name...}Win32_Service

{StartService, St... {Caption, Description, InstallDate, Name...}..

Here we can see that there is a WMI class called that holds a method called . This classes
provider lives within the namespace. However; we currently don’t know what the WMI
provider is, so let’s find that out next.

WMI providers, as mentioned above, are essentially just COM servers. Which means that
they are stored in the registry behind a class identifier (CLSID). By obtaining a provider
instance and filtering on the WMI class we are curious about, we may pull that CLSID out.

{d63a5850-8f16-11cf-9f47-00aa@0bf345c}

We can then search for that CLSID within the HCKR hive in the registry:

C:\WINDOWS\system32\wbem\cimwin32.d1l1l

Great, now we have a lot of great information about the WMI class and method we want to
invoke:

4/8

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/07-working-with-wmi?view=powershell-7.2
https://docs.microsoft.com/en-us/windows/win32/wmisdk/--win32provider

WMI Class: Win32Process
Method: Create
Provider: cimwin32.dll
Namespace: ROOT/cimv2

Lastly, I need to see the parameters I need to pass through in order to successfully create the
process. There are a couple of ways to achieve this but let’s first see if we can leverage the
WMI cemdlets to give us this information.

Name CimType Qualifiers

ReferenceClassName---- —ee--oo oo
------------------ CommandLine String {ID, In,
MappingStrings}CurrentDirectory String {ID, 1In,
MappingStrings}ProcessStartupInformation Instance {EmbeddedInstance, ID, In,
MappingStrings}ProcessId UInt32 {ID, MappingStrings, Out}

Great, here I can see that there are 3 “In” parameters (CommandLine,
CurrentDirectory, ProcessStartupInformation) and 1 “Out” parameter (ProcessId).
To get more information about the parameters I need to pass to a method I typically open up
the provider’s MOF file. In this case C:\Windows\System32\wbem\cimwin32.mof

After getting to the point of where the Win32_ Process class is defined we see a lot of great
information:

[Dynamic, Provider ("CIMWin32")
ToInstance, SupportsCreate,CreateBy("Create"), SupportsDelete,DeleteBy("DeleteInstance")
: ToInstance,UUID("{8502C4DC-5FBB-11D2-AAC1-006008C78BC7}") : ToInstance]class
Win32_Process : CIM_Process{[Read : ToSubclass,Privileges{"SeDebugPrivilege"}
ToSubclass, MappingStrings{"Win32API|Tool Help Structures|MODULEENTRY32|szExePath"} :
ToSubclass] string ExecutablePath;[Read : ToSubclass,Privileges{"SeDebugPrivilege"} :
ToSubclass,MappingStrings{"Win32 |WINNT.H|QUOTA_LIMITS|MaximumwWorkingSetSize"}
ToSubclass] uint32 MaximumWorkingSetSize; [Read
ToSubclass,Privileges{"SeDebugPrivilege"} :
ToSubclass, MappingStrings{"Win32 |WINNT.H|QUOTA_LIMITS|MinimumWorkingSetSize"} :
ToSubclass] uint32 MinimumWorkingSetSize;...

Firstly, there are a lot of read instructions, which showcases that we can probably use this
same class to get a process object by instantiating the Win32_ Process class. We will do this
later, what we care about now however is the Create method. We see there is a “Constructor”

qualifier which means that there is a call that will create an instance of this class. Looking at
the information for the Constructor method, we see it refers to Create.

5/8

https://docs.microsoft.com/en-us/windows/win32/wmisdk/standard-qualifiers

[Constructor,Static, Implemented, Privileges{"SeAssignPrimaryTokenPrivilege",
"SeIncreaseQuotaPrivilege", "SeRestorePrivilege"} : ToSubclass,ValueMap{"0o", "2",
"3", "8", "o", "21", ".."} : ToSubclass,MappingStrings{"Win32API|Process and Thread
Functions|CreateProcess"} : ToSubclass] uint32 Create([In
ToSubclass,MappingStrings{"Win32API|Process and Thread Functions|lpCommandLine "} :
ToSubclass] string CommandLine, [In : ToSubclass,MappingStrings{"Win32API|Process and
Thread Functions|CreateProcess|lpCurrentDirectory "} : ToSubclass] string
CurrentDirectory, [In : ToSubclass,MappingStrings{"WMI|Win32_ProcessStartup"}
ToSubclass] Win32_ProcessStartup ProcessStartupInformation, [Out
ToSubclass,MappingStrings{"Win32API|Process and Thread
Functions|CreateProcess|lpProcessInformation|dwProcessId"} : ToSubclass] uint32
ProcessId);

This definition has the same information that the WMI cmdlet holds, except it says that one
parameter (ProcessStartupInformation) is passed in via a Wing2_ ProcessStartup
instance. Taking a look at this class, I can see that I can create my own instance of this class,
specify a wide range of ProcessStartup options. One that stood out was the parameter.

[Abstract,Locale(1033) : ToInstance,UUID("{8502C4DB-5FBB-11D2-AAC1-006008C78BC7}")
ToInstance]class Win32_ProcessStartup : Win32_MethodParameterClass

{

[Write : ToSubclass,MappingStrings{"Win32API|Process and Thread
Structures|STARTUPINFO|wShowwWindow"} : ToSubclass] uintl16 ShowWindow; ...class
Win32_ProcessStartup : Win32_MethodParameterClass{[Description("The ShowWindow
property specifies how the window is to be displayed to the user.") : Amended
ToSubclass,Values{"SW_HIDE", "SW_NORMAL", "SW_SHOWMINIMIZED", "SW_SHOWMAXIMIZED",
"SW_SHOWNOACTIVATE", "SW_SHOW", "SW_MINIMIZE", "SW_SHOWMINNOACTIVE", "SW_SHOWNA",
"SW_RESTORE", "SW_SHOWDEFAULT", "SW_FORCEMINIMIZE"} : Amended ToSubclass] uinti16
ShowwWindow;

There is an option to specify Sw__Hidden (or value 0). Let’s do that because I figured that
starting a hidden notepad process is what any regular hacker would do.

First let’s create a Win32_ ProcessStartup instance with the hidden parameter and pass it in.

Lastly, let’s invoke the Create method:

ProcessId Returnvalue PSComputerName— — — — — — — — — — — — — — — — — — 2432 0

After invoking this, we can see that this process was spawned under WmiPrvse.exe:

a;afﬁWm'PanE.em 35928 K 12,072 K 10128 WMI Provider Host Microsoft Corparation NT AUTHORITYMETWORK SERVICE
jno‘tepad.e:e 232K 13,180 K 15444 Notepad Microsoft Corporation DESKTOP-D2SN8AHTestUser

If we look at the WmiPrvse.exe binary, we see that the Win32_ Process provider DLL —
cimwing2.dll was loaded:

6/8

advapid2.dl Advanced Windows 32 Base API Microsoft Comparation C:\Windows\System3dZhadvapid2 dl
beryptprimitives. dil Windows Cryptographic Primitives ... Microsoft Comporation C:\Windows\System 32 beryptprimitives . dil
cimwin32.dll WMI 'Win32 Provider Microsoft Corporation CWindows \System 32 whbem \cimwin 32 dll
clbcatq.dl COM+ Configuration Catalog Microsoft Comporation C:\Windows\System32'clbcatg dll
combase.dll Microsoft COM for Windows Microsoft Corporation C\Windows\System32'combase dll
fastprox.dil WMI Custom Marshaller Microsoft Comporation C:\Windows\System 32'whbemfastprox.dll
framedynos.dl WMI SDK Provider Framework Microsoft Cor “wration C\Windows\System32'framedynos dll

adid2 dil GDI Client DLL Microsoft Comparation C:Windows \System32hadid2 dll

qdi3Zfull dil GDI Client DLL Microsoft Corporation C \Windows ' System 32 gdi32full dil

kemel appcore.di AppModel API Host Microsoft Corporation CWindows\System 32 kemel appcore dll
kemel32 dl Windows NT BASE API Client DLL ~ Microsoft Corporation C:A\Windows \System 32 kemel 32 dl
KemelBase dil Windows NT BASE API Client DLL ~ Microsoft Corporation CWindows\System 32" KemelBase dl
locale.nls C:A\Windows \System324ocale nls
msvep_win dil Microsoft® C Runtime Library Microsoft Corporation C\Windows\System32'msvep_win dll
msvert.dl Windows NT CRT DLL Microsoft Comporation C:Windows \System32'msvert.dll
ncobjapi.di Microsoft Comporation CAWindows\System 32 ncobjapi dil

ritdll.dll MT Layer DLL Microsoft Comparation C:Windows \System 32 ntdll dll

oleaut 32 dl OLEAUT3Z2.DLL Microsoft Corporation C:A\Windows \System 32 woleaut 32.dll

powrprof dil Power Profile Helper DLL Microsoft Corporation C\Windows\System 32 powrprof dll
profapi.dil User Profile Basic API Microsoft Comporation C:\Windows\System 32 profapi dll
RODOODO000006.clb C:\Windows\Registration \RO00000000006 clb
rpertd.dil Remate Procedure Call Runtime Microsoft Comporation C:\Windows\System32vwpcrtd dll

sechost dll Host for SCM/SDDLLSA Lookup ... Microsoft Corporation C\Windows\System32'sechost dil
SortDefautt nls C:\Windows \Globalization ' Sarting Sart Default .nls
sapicl.dl Security Support Provider Interface Microsoft Carporation C \Windows'System 32 aspich dll

ucrtbase dll Microsoft® C Runtime Library Microsoft Corporation CWindows \System3Z wcrtbase dl
umpde.dil C:\Windows\System32'wumpde dll

userd2 dil Multi-User Windows USER APICli... Microsoft Corporation CWindows \System32wserd2 dil

userd2.dil mui Multi-User Windows USER APICli... Microsoft Corporation C:AWindows \System32hen-US wser32 dil mui
usereny dil Userenv Microsoft Corporation CA\Windows\System32'wserenv dil
whemcaomn.dil WMI Microsoft Comporation C:\Windows'\System32'wbemcomn.dll
whemprox dll WMI Microsoft Comporation CWindows\System 32 whem wbemprox dll
whemsve.dil WMI Microsoft Comparation C:Windows\System32'wbem wbemsvec.dil
win32u dil Win32u Microsoft Corporation C:A\Windows \System 32 win32u dll
WmiFrvSE.exe WMI Provider Host Microsoft Corporation CWindows \System 32 wbem \WmiPrvSE exe
wmiutils.dll WMI Microsoft Comporation C:A\Windows \System 32 whbem wmitils dll
weZ_32 dll Windows Socket 2.00 32-Bit DLL Microsoft Corporation CWindows\System32'ws2_32 dll

Before we close out, remember earlier when we saw that we could get a WMI instance of a
process via Win32_ Process as well? Let’s see if we can do that to get information about our

newly created notepad process:

ProcessId Name HandleCount WorkingSetSize VirtualSize — — - — = — — — — — — — — — — —
—————————— 15444 notepad.exe 190 13496320 2203470827520

You can also achieve this via Get-WMIObject :

7/8

PS C:\Users\TestUser\Desktop\AtomicTestHarnesses> Get-WmiObject win32_process

__GENUS

—CLASS
__SUPERCLASS
__DYNASTY

__RELPATH
__PROPERTY_COUNT
__DERIVATION
__SERVER
__NAMESPACE

__PATH

Caption

CommandLine
CreationClassName
CreationDate
CSCreationClassName
CSName

Description
ExecutablePath
ExecutionState
Handle

HandleCount
InstallDate
KernelModeTime
MaximumWorkingSetSize
MinimumWorkingSetSize
Name
OSCreationClassName
OSName
OtherOperationCount
OtherTransferCount
PageFaults
PageFileUsage
ParentProcessId
PeakPageFileUsage
PeakVirtualSize
PeakWorkingSetSize
Priority
PrivatePageCount

Conclusion:

. “
! Win32_Process

: CIM_Process

: CIM_ManagedSystemElement

! Win32_Process.Handle="15444"

HE -]

: {CIM_Process, CIM_LogicalElement, CIM_ManagedSystemElement}
: DESKTOP-B825N8AH

: root\cimv2

: \\DESKTOP-82SN8AH\root\cimv2:Win32_Process.Handle="15444"

: notepad.exe

: notepad.exe

: Win32_Process

I 2822862908728U9.018453-420

! Win32_ComputerSystem

: DESKTOP-B2SNBAH

: notepad.exe

: C:\Windows\system32\notepad.exe

: 8

: 2U4576688

-

: 15444
: 198

: 468758

1 1380

1 208

: notepad.exe

! Win32_oOperatingSystem
: Microsoft Windows 18 Pro|C:\Windows|\Device\Harddiske\Partition2
: 95

2372

: 3584

1 2080

: 18128

1 2824

1 2283473547264
: 13328

o

During this post I wanted to set a baseline of knowledge that will carry on to other posts in
this series “WMI Internals”. I find this important so that everyone has the same vocabulary
and basic understanding of how things work. What I showed today wasn’t anything new but
will be showcased in less basic examples in the following posts. There were some things
purposefully left out for WMI, but I urge everyone to go to the resource section and check out
the work of some phenomenal researchers. Thanks for tuning in, part 2 will dive deeper into
WMI and COM relationships.

Resources:

8/8

