
1/7

By Yarden Shafir

HyperGuard Part 3 – More SKPG Extents
windows-internals.com/hyperguard-part-3-more-skpg-extents

Hi all! And welcome to part 3 of the HyperGuard chronicles!

In the previous blog post I introduced SKPG extents – the data structures that describe the

memory ranges and system components that should be monitored by HyperGuard. So far, I

only covered the initialization extent and various types of memory extents, but those are just

the beginning. In this post I will cover the rest of the extent types and show how they are

used by HyperGuard to protect other areas of the system.

The next extent group to look into is MSR and Control Register extents:

MSR and Control Register Extents

This group contains the following extent types:

0x1003 : SkpgExtentMsr

0x1006 : SkpgExtentControlRegister

0x100C : SkpgExtentExtendedControlRegister

These extent types are received from the normal kernel, but they are never added into the

array at the end of the SKPG_CONTEXT or get validated during the runtime checks that I’ll

describe in one of the next posts. Instead, they are used in yet another part of SKPG

initialization.

After initializing the SKPG_CONTEXT in SkpgInitializeContext , SkpgConnect

performs an IPI (Inter-Processor Interrupt). It performs this IPI by calling

SkeGenericIpiCall with a target function and input data, and the function will call the

target function on every processor and send the requested data. In this case, the target

function is SkpgxInstallIntercepts and the input data contains the number of input

extents and the matching array:

I will go over intercepts in a lot more detail in a future blog post, but to give some necessary

context: SKPG can ask the hypervisor to intercept certain actions in the system, like memory

access, register access or instructions. HyperGuard uses that ability to intercept access to

https://windows-internals.com/hyperguard-part-3-more-skpg-extents/
https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-2-skpg-extents/
https://windows-internals.com/wp-content/uploads/2022/04/Skpg_ipi_install_intercepts.png

2/7

certain MSRs and Control Registers (and other things, which I will talk about later) to

prevent malicious modifications. HyperGuard uses the input extents to choose which MSRs

and Control Registers to intercept, out of the list of accepted options.

Since each processor has its own set of MSRs and registers, HyperGuard needs to intercept

the requested one on all processors. Therefore, SkpgxInstallIntercepts is called through

an IPI, to make sure it’s called in the context of each processor.

Once in SkpgxInstallIntercepts , the function iterates over the array of input extents and

handles the three types included in this group based on the data supplied in them. If you

remember, each extent contains 0x18 bytes of type-specific data. For this group, this data

contains the number of the MSR/Register to be intercepted as well as the processor number

that it should be intercepted on. This means that there might be more that one input extent

for each MSR or control register, each for a different processor number. Or MSRs and control

registers might only be intercepted on certain processors but not on others, if that is what the

normal kernel requested. The data structure in the input extent for MSRs and control register

extents looks something like this:

typedef struct _MSR_CR_DATA

{

 ULONG64 Mask;

 ULONG64 Value;

 ULONG RegisterNumber;

 ULONG ProcessorNumber;

} MSR_CR_DATA, *PMSR_CR_DATA;

While iterating over the extents, the function checks if the extent type is of one of the three in

this group, and if so whether the processor number in the extent matches the current

processor. If so, it checks if the number of the MSR or control register matches one of the

accepted ones. If the extent matches one of the accepted registers, a mask is fetched from an

array in the SKPRCB – this array contains the needed masks for all accepted MSRs and

control registers so the hypervisor can be asked to intercept them. All masks are collected,

and when all extents have been examined the final mask is sent to

ShvlSetRegisterInterceptMasks to be installed. The mask that is used to install the

intercepts is the union HV_REGISTER_CR_INTERCEPT_CONTROL . It is documented and can be

found here.

Now that the general process is covered, we can look into the accepted MSRs and control

registers and understand why HyperGuard might want to protect them from modifications,

starting from the MSRs:

SkpgExtentMsr

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm

3/7

Patching certain MSRs is a popular operation for exploits and rootkits, allowing them to do

things such as hooking system calls or disabling security features. Some of those MSRs are

already periodically monitored by PatchGuard, but there are benefits to intercepting them

through HyperGuard that I will cover later. The list of MSRs that can be intercepted keeps

growing over time and receives new additions as new features and registers get added to

CPUs, such as the implementation of CET which added multiple MSRs that might be a target

for attackers. As of Windows 11 build 22598, the MSRs that can be intercepted by SKPG are:

1. IA32_EFER (0xC0000080) – among other things, this MSR contains the NX bit,

enforcing a mitigation that doesn’t allow code execution in addresses that aren’t

specifically marked as executable. It also contains flags related to virtualization

support.

2. IA32_STAR (0xC0000081) – contains the address of the x86 system call handler.

3. IA32_LSTAR (0xC0000082) – contains the address of the x64 system call handler –

should normally be pointing to nt!KiSystemCall64 .

4. IA32_CSTAR (0xC0000083) – contains the address of the system call handler on

x64 when running in compatibility mode – should normally be pointing to

nt!KiSystemCall32 .

5. IA32_SFMASK (0xC0000084) – system call flags mask. Any bit set here when a

system call is executed will be cleared from EFLAGS .

6. IA32_TSC_AUX (0xC0000103) – usage depends on the operating system, but this

MSR is generally used to store a signature, to be read together with a time stamp.

7. IA32_APIC_BASE (0x1B) – contains the APIC base address.

8. IA32_SYSENTER_CS (0x174) – contains the CS value for ring 0 code when

performing system calls with SYSENTER .

9. IA32_SYSENTER_ESP (0x175) – contains the stack pointer for the kernel stack when

performing system calls with SYSENTER .

10. IA32_SYSENTER_EIP (0x176) – contains the EIP value for ring 0 entry when

performing system calls with SYSENTER .

11. IA32_MISC_ENABLE (0x1A0) – controls multiple processor features, such as Fast

Strings disable, performance monitoring and disable of the XD (no-execute) bit.

12. MSR_IA32_S_CET (0x6A2) – controls kernel mode CET setting.

13. IA32_PL0_SSP (0x6A4) – contains the ring 0 shadow stack pointer.

14. IA32_PL1_SSP (0x6A5) – contains the ring 1 shadow stack pointer.

15. IA32_PL2_SSP (0x6A6) – contains the ring 2 shadow stack pointer.

16. IA32_INTERRUPT_SSP_TABLE_ADDR (0x6A8) – contains a pointer to the interrupt

shadow stack table.

17. IA32_XSS (0xDA0) – contains a mask to be used when XSAVE and XRESTOR

instructions are called in kernel-mode. For example, it controls the saving and loading

of the registers used by Intel Processor Trace (IPT).

SkpgExtentControlRegister

4/7

By modifying certain control registers an attacker can disable security features or gain

control of execution. Currently SKPG supports intercepts of two control registers:

1. CR0 – controls certain hardware configuration such as paging, protected mode and

write protect.

2. CR4 – controls the configuration of different hardware features. For example, driver

signature enforcement, SMEP and UMIP bits control security features that make

CR4 an interesting target for attackers using an arbitrary write exploit.

SkpgExtentExtendedControlRegister

Currently only one extended control register exists – XCR0 . It’s used to toggle storing or

loading of extended registers such as AVX , ZMM and CET registers, and can be intercepted

and protected by SKPG.

Installing the Intercepts

Now that we know that registers can be intercepted and why, we can get back and look at the

installation of the intercepts through ShvlSetRegisterInterceptMasks . The function

receives a HV_REGISTER_CR_INTERCEPT_CONTROL mask to know which intercepts to install,

as well as the values for a few of the intercepted registers – CR0 , CR4 and

IA32_MISC_ENABLE MSR. These are all placed in a structure that is passed into the

function, which looks like this:

struct _REGISTER_INTERCEPT_INFORMATION

{

 HV_REGISTER_CR_INTERCEPT_CONTROL InterceptControl;
 ULONG64 Cr0Value;

 ULONG64 Cr4Value;

 ULONG64 Ia32MiscEnableValue;

} REGISTER_INTERCEPT_INFORMATION, *PREGISTER_INTERCEPT_INFORMATION;

The InterceptControl mask is built while iterating over the input extents, and the values

for CR0 , CR4 and IA32_MISC_ENABLE are read from the SKPRCB (their values, together

with the values for all other potentially-intercepted registers, are placed there in

SkeInitSystem , triggered from a secure call with code SECURESERVICE_PHASE3_INIT).

This structure is sent to ShvlSetRegisterInterceptMasks which in turn calls

ShvlSetVpRegister on each of the four values in the input structure to register an

intercept. Setting the register values is done by initiating a fast hypercall with a code of

HvCallSetVpRegisters (0x51), sending on four arguments (for anyone interested, all

hypercall values are documented here). The last two arguments are of types

HV_REGISTER_NAME and HV_REGISTER_VALUE – these types are documented so it’s easy to see

what registers are being set:

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/hypercalls/overview
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/datatypes/hv_register_name
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/datatypes/hv_register_value

5/7

Looking at the function, we see that it’s setting the required values for CR0 , CR4 and

IA32_MISC_ENABLE , and finally setting the mask for intercept control, so from this point all

requested registers are intercepted by the hypervisor and any access to them will be

forwarded to the SKPG intercept routine.

Secure VA Translation Extents

In the previous post I introduced the secure extents – extents indicating VTL1 memory or

data structures to be protected. I also covered memory extents, including the secure memory

extents. Here is another kind of secure extents, which are initialized internally in the secure

kernel, without using input extents from VTL0 . They are called Secure VA Translation

Extents and are initialized inside SkpgCreateSecureVaTranslationExtents . These

extents are used to protect Virtual->Physical address translations for different pages or

memory regions that are a common target for attack:

0x100B : SkpgExtentProcessorMode

0x100E : SkpgExtentLoadedModule

0x100F : SkpgExtentProcessorState

0x1010 : SkpgExtentKernelCfgBitmap

0x1011 : SkpgExtentZeroPage

0x1012 : SkpgExtentAlternateInvertedFunctionTable

0x1015 : SkpgExtentSecureExtensionTable

0x1017 : SkpgExtentKernelVAProtection

0x1019 : SkpgExtentSecurePool

https://windows-internals.com/wp-content/uploads/2022/04/ShvlSetRegisterInterceptMask.png

6/7

Though they are called secure extents, the data they protect is mostly VTL0 data, such as the

VTL0 mapping of the KCFG bitmap or the inverted function table. The exact validations

done differ between the types: for example, the zero page should never be mapped so a

successful virtual->physical address translation of the zero page should not be acceptable,

while the kernel CFG bitmap should have valid translations but the VTL0 mapping of those

pages should always be read-only.

Looking at SkpgCreateSecureVaTranslationExtents , we can see that the extents are

initialized with no input data or memory ranges:

This is because all of these extents correlate to specific data structures which are all

initialized elsewhere so the data doesn’t need to be part of the extent itself, so the type is the

only part that needs to be set. We can also see that some of these extents are only initialized

when KCFG is enabled, since without it they are not needed. I will cover the checks done for

each of these extents in a later blog post, which will describe SKPG extent verification.

Finally, if HotPatching is enabled, two more extents are added, both with type

SkpgExtentExtensionTable :

https://windows-internals.com/wp-content/uploads/2022/04/SkpgCreateSecureVaTranslationExtents.png

7/7

These extents protect the SkpgSecureExtension and SkpgNtExtension variables, which

keep track of HotPatching data.

Per-Processor Extents

There are two more extents that are processor-specific, since the data they protect exists

separately in each processor. However, unlike the MSR and Control Register extents, no

intercepts need to be installed and no function needs to be executed on all processors (for

now). These extents are also received from the normal kernel and added to the array of

extents in the SKPG_CONTEXT structure. The data received for each of these two extents

includes base address, limit and a processor number, so multiple entries might exist for these

extent types, with different processor numbers:

0x1004 : SkpgExtentIdt

0x1005 : SkpgExtentGdt

These extents contain the memory range for the GDT and IDT tables on each processor, so

HyperGuard will protect them from malicious modifications.

Unused Extents

Extent types 0x1007 , 0x1008 , 0x1013 and 0x1018 never get initialized anywhere in

SecureKernel.exe and don’t seem to be used anywhere. They may be deprecated or not

fully implemented yet.

https://windows-internals.com/wp-content/uploads/2022/04/SkpgExtentExtensionTable.png

