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About two years ago I quit being a full-time red team operator. However, it still is a field of

expertise that stays very close to my heart. A few weeks ago, I was looking for a new side

project and decided to pick up an old red teaming hobby of mine: bypassing/evading

endpoint protection solutions.

In this post, I’d like to lay out a collection of techniques that together can be used to bypassed

industry leading enterprise endpoint protection solutions. This is purely for educational

purposes for (ethical) red teamers and alike, so I’ve decided not to publicly release the source

code. The aim for this post is to be accessible to a wide audience in the security industry, but

not to drill down to the nitty gritty details of every technique. Instead, I will refer to writeups

of others that deep dive better than I can.

In adversary simulations, a key challenge in the “initial access” phase is bypassing the

detection and response capabilities (EDR) on enterprise endpoints. Commercial command

and control frameworks provide unmodifiable shellcode and binaries to the red team

operator that are heavily signatured by the endpoint protection industry and in order to

execute that implant, the signatures (both static and behavioural) of that shellcode need to be

obfuscated.

In this post, I will cover the following techniques, with the ultimate goal of executing

malicious shellcode, also known as a (shellcode) loader:

1. Shellcode encryption

2. Reducing entropy

3. Escaping the (local) AV sandbox

4. Import table obfuscation

5. Disabling Event Tracing for Windows (ETW)

6. Evading common malicious API call patterns

7. Direct system calls and evading “mark of the syscall”

https://vanmieghem.io/blueprint-for-evading-edr-in-2022/
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8. Removing hooks in ntdll.dll

9. Spoofing the thread call stack

10. In-memory encryption of beacon

11. A custom reflective loader

12. OpSec configurations in your Malleable profile

1. Shellcode encryption

Let’s start with a basic but important topic, static shellcode obfuscation. In my loader, I

leverage a XOR or RC4 encryption algorithm, because it is easy to implement and doesn’t

leave a lot of external indicators of encryption activities performed by the loader. AES

encryption to obfuscate static signatures of the shellcode leaves traces in the import address

table of the binary, which increase suspicion. I’ve had Windows Defender specifically trigger

on AES decryption functions (e.g. CryptDecrypt , CryptHashData , CryptDeriveKey

etc.) in earlier versions of this loader.

Output of dumpbin /imports, an easy giveaway of only AES decryption functions being used

in the binary.

2. Reducing entropy

Many AV/EDR solutions consider binary entropy in their assessment of an unknown binary.

Since we’re encrypting the shellcode, the entropy of our binary is rather high, which is a clear

indicator of obfuscated parts of code in the binary.

There are several ways of reducing the entropy of our binary, two simple ones that work are:

1. Adding low entropy resources to the binary, such as (low entropy) images.

2. Adding strings, such as the English dictionary or some of "strings C:\Program

Files\Google\Chrome\Application\100.0.4896.88\chrome.dll"  output.

A more elegant solution would be to design and implement an algorithm that would

obfuscate (encode/encrypt) the shellcode into English words (low entropy). That would kill

two birds with one stone.

https://0xrick.github.io/win-internals/pe6/


3/11

3. Escaping the (local) AV sandbox

Many EDR solutions will run the binary in a local sandbox for a few seconds to inspect its

behaviour. To avoid compromising on the end user experience, they cannot afford to inspect

the binary for longer than a few seconds (I’ve seen Avast taking up to 30 seconds in the past,

but that was an exception). We can abuse this limitation by delaying the execution of our

shellcode. Simply calculating a large prime number is my personal favourite. You can go a bit

further and deterministically calculate a prime number and use that number as (a part of) the

key to your encrypted shellcode.

4. Import table obfuscation

You want to avoid suspicious Windows API (WINAPI) from ending up in our IAT (import

address table). This table consists of an overview of all the Windows APIs that your binary

imports from other system libraries. A list of suspicious (oftentimes therefore inspected by

EDR solutions) APIs can be found here. Typically, these are VirtualAlloc ,

VirtualProtect , WriteProcessMemory , CreateRemoteThread , SetThreadContext

etc. Running dumpbin /exports <binary.exe>  will list all the imports. For the most part,

we’ll use Direct System calls to bypass both EDR hooks (refer to section 7) of suspicious

WINAPI calls, but for less suspicious API calls this method works just fine.

We add the function signature of the WINAPI call, get the address of the WINAPI in

ntdll.dll  and then create a function pointer to that address:

typedef BOOL (WINAPI * pVirtualProtect)(LPVOID lpAddress, SIZE_T dwSize, DWORD  
flNewProtect, PDWORD lpflOldProtect); 
pVirtualProtect fnVirtualProtect; 

unsigned char sVirtualProtect[] = { 
'V','i','r','t','u','a','l','P','r','o','t','e','c','t', 0x0 }; 
unsigned char sKernel32[] = { 'k','e','r','n','e','l','3','2','.','d','l','l', 0x0 }; 

fnVirtualProtect = (pVirtualProtect) GetProcAddress(GetModuleHandle((LPCSTR) 
sKernel32), (LPCSTR)sVirtualProtect); 
// call VirtualProtect 
fnVirtualProtect(address, dwSize, PAGE_READWRITE, &oldProt); 

Obfuscating strings using a character array cuts the string up in smaller pieces making them

more difficult to extract from a binary.

The call will still be to an ntdll.dll  WINAPI, and will not bypass any hooks in WINAPIs

in ntdll.dll , but is purely to remove suspicious functions from the IAT.

5. Disabling Event Tracing for Windows (ETW)

Many EDR solutions leverage Event Tracing for Windows (ETW) extensively, in particular

Microsoft Defender for Endpoint (formerly known as Microsoft ATP). ETW allows for

extensive instrumentation and tracing of a process’ functionality and WINAPI calls. ETW has

https://0xrick.github.io/win-internals/pe6/
https://github.com/Mr-Un1k0d3r/EDRs
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components in the kernel, mainly to register callbacks for system calls and other kernel

operations, but also consists of a userland component that is part of ntdll.dll  (ETW deep

dive and attack vectors). Since ntdll.dll  is a DLL loaded into the process of our binary,

we have full control over this DLL and therefore the ETW functionality. There are quite a few

different bypasses for ETW in userspace, but the most common one is patching the function

EtwEventWrite  which is called to write/log ETW events. We fetch its address in

ntdll.dll , and replace its first instructions with instructions to return 0 ( SUCCESS ).

void disableETW(void) { 
// return 0 
unsigned char patch[] = { 0x48, 0x33, 0xc0, 0xc3};     // xor rax, rax; ret 
 
ULONG oldprotect = 0; 
size_t size = sizeof(patch);
 
HANDLE hCurrentProc = GetCurrentProcess(); 
 
unsigned char sEtwEventWrite[] = { 

'E','t','w','E','v','e','n','t','W','r','i','t','e', 0x0 }; 
 
void *pEventWrite = GetProcAddress(GetModuleHandle((LPCSTR) sNtdll), (LPCSTR) 

sEtwEventWrite); 
 
NtProtectVirtualMemory(hCurrentProc, &pEventWrite, (PSIZE_T) &size, 

PAGE_READWRITE, &oldprotect); 
 
memcpy(pEventWrite, patch, size / sizeof(patch[0])); 
 
NtProtectVirtualMemory(hCurrentProc, &pEventWrite, (PSIZE_T) &size, 

oldprotect, &oldprotect); 
FlushInstructionCache(hCurrentProc, pEventWrite, size); 
 

} 

I’ve found the above method to still work on the two tested EDRs, but this is a noisy ETW

patch.

6. Evading common malicious API call patterns

Most behavioural detection is ultimately based on detecting malicious patterns. One of these

patters is the order of specific WINAPI calls in a short timeframe. The suspicious WINAPI

calls briefly mentioned in section 4 are typically used to execute shellcode and therefore

heavily monitored. However, these calls are also used for benign activity (the

VirtualAlloc , WriteProcess , CreateThread  pattern in combination with a memory

allocation and write of ~250KB of shellcode) and so the challenge for EDR solutions is to

distinguish benign from malicious calls. Filip Olszak wrote a great blog post leveraging delays

and smaller chunks of allocating and writing memory to blend in with benign WINAPI call

behaviour. In short, his method adjusts the following behaviour of a typical shellcode loader:

https://binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://whiteknightlabs.com/2021/12/11/bypassing-etw-for-fun-and-profit/
https://www.mdsec.co.uk/2020/03/hiding-your-net-etw/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://blog.redbluepurple.io/offensive-research/bypassing-injection-detection
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1. Instead of allocating one large chuck of memory and directly write the ~250KB implant

shellcode into that memory, allocate small contiguous chunks of e.g. <64KB memory

and mark them as NO_ACCESS . Then write the shellcode in a similar chunk size to the

allocated memory pages.

2. Introduce delays between every of the above mentioned operations. This will increase

the time required to execute the shellcode, but will also make the consecutive execution

pattern stand out much less.

One catch with this technique is to make sure you find a memory location that can fit your

entire shellcode in consecutive memory pages. Filip’s DripLoader implements this concept.

The loader I’ve built does not inject the shellcode into another process but instead starts the

shellcode in a thread in its own process space using NtCreateThread . An unknown process

(our binary will de facto have low prevalence) into other processes (typically a Windows

native ones) is suspicious activity that stands out (recommended read “Fork&Run – you’re

history”). It is much easier to blend into the noise of benign thread executions and memory

operations within a process when we run the shellcode within a thread in the loader’s process

space. The downside however is that any crashing post-exploitation modules will also crash

the process of the loader and therefore the implant. Persistence techniques as well as running

stable and reliable BOFs can help to overcome this downside.

7. Direct system calls and evading “mark of the syscall”

The loader leverages direct system calls for bypassing any hooks put in ntdll.dll  by the

EDRs. I want to avoid going into too much detail on how direct syscalls work, since it’s not

the purpose of this post and a lot of great posts have been written about it (e.g. Outflank).

In short, a direct syscall is a WINAPI call directly to the kernel system call equivalent. Instead

of calling the ntdll.dll  VirtualAlloc  we call its kernel equivalent

NtAlocateVirtualMemory  defined in the Windows kernel. This is great because we’re

bypassing any EDR hooks used to monitor calls to (in this example) VirtualAlloc  defined

in ntdll.dll .

In order to call a system call directly, we fetch the syscall ID of the system call we want to call

from ntdll.dll , use the function signature to push the correct order and types of function

arguments to the stack, and call the syscall <id>  instruction. There are several tools that

arrange all this for us, SysWhispers2 and SysWhisper3 are two great examples. From an

evasion perspective, there are two issues with calling direct system calls:

1. Your binary ends up with having the syscall  instruction, which is easy to statically

detect (a.k.a “mark of the syscall”, more in “SysWhispers is dead, long live

SysWhispers!”).

https://github.com/xuanxuan0/DripLoader
https://www.cobaltstrike.com/blog/cobalt-strike-4-5-fork-run-youre-history/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_main.htm
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/jthuraisamy/SysWhispers2
https://github.com/klezVirus/SysWhispers3
https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
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2. Unlike benign use of a system call that is called through its ntdll.dll  equivalent, the

return address of the system call does not point to ntdll.dll . Instead, it points to

our code from where we called the syscall, which resides in memory regions outside of

ntdll.dll . This is an indicator of a system call that is not called through

ntdll.dll , which is suspicious.

To overcome these issues we can do the following:

1. Implement an egg hunter mechanism. Replace the syscall  instruction with the egg

(some random unique identifiable pattern) and at runtime, search for this egg  in

memory and replace it with the syscall  instruction using the ReadProcessMemory

and WriteProcessMemory  WINAPI calls. Thereafter, we can use direct system calls

normally. This technique has been implemented by klezVirus.

2. Instead of calling the syscall  instruction from our own code, we search for the

syscall  instruction in ntdll.dll  and jump to that memory address once we’ve

prepared the stack to call the system call. This will result in an return address in RIP

that points to ntdll.dll  memory regions.

Both techniques are part of SysWhisper3.

8. Removing hooks in ntdll.dll

Another nice technique to evade EDR hooks in ntdll.dll  is to overwrite the loaded

ntdll.dll  that is loaded by default (and hooked by the EDR) with a fresh copy from

ntdll.dll . ntdll.dll  is the first DLL that gets loaded by any Windows process. EDR

solutions make sure their DLL is loaded shortly after, which puts all the hooks in place in the

loaded ntdll.dll  before our own code will execute. If our code loads a fresh copy of

ntdll.dll  in memory afterwards, those EDR hooks will be overwritten. RefleXXion is a

C++ library that implements the research done for this technique by MDSec. RelfeXXion

uses direct system calls NtOpenSection  and NtMapViewOfSection  to get a handle to a

clean ntdll.dll  in \KnownDlls\ntdll.dll  (registry path with previously loaded DLLs).

It then overwrites the .TEXT  section of the loaded ntdll.dll , which flushes out the EDR

hooks.

I recommend to use adjust the RefleXXion library to use the same trick as described above in

section 7.

9. Spoofing the thread call stack

The next two sections cover two techniques that provide evasions against detecting our

shellcode in memory. Due to the beaconing behaviour of an implant, for a majority of the

time the implant is sleeping, waiting for incoming tasks from its operator. During this time

the implant is vulnerable for memory scanning techniques from the EDR. The first of the two

evasions described in this post is spoofing the thread call stack.

https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
https://github.com/klezVirus/SysWhispers3
https://github.com/hlldz/RefleXXion
https://www.mdsec.co.uk/2022/01/edr-parallel-asis-through-analysis/
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When the implant is sleeping, its thread return address is pointing to our shellcode residing

in memory. By examining the return addresses of threads in a suspicious process, our

implant shellcode can be easily identified. In order to avoid this, want to break this

connection between the return address and shellcode. We can do so by hooking the

Sleep()  function. When that hook is called (by the implant/beacon shellcode), we

overwrite the return address with 0x0  and call the original Sleep()  function. When

Sleep()  returns, we put the original return address back in place so the thread returns to

the correct address to continue execution. Mariusz Banach has implemented this technique

in his ThreadStackSpoofer project. This repo provides much more detail on the technique

and also outlines some caveats.

We can observe the result of spoofing the thread call stack in the two screenshots below,

where the non-spoofed call stack points to non-backed memory locations and a spoofed

thread call stack points to our hooked Sleep ( MySleep ) function and “cuts off” the rest of

the call stack.

Default beacon thread call stack.

Spoofed beacon thread call stack.

10. In-memory encryption of beacon

The other evasion for in-memory detection is to encrypt the implant’s executable memory

regions while sleeping. Using the same sleep hook as described in the section above, we can

obtain the shellcode memory segment by examining the caller address (the beacon code that

calls Sleep()  and therefore our MySleep()  hook). If the caller memory region is

https://twitter.com/mariuszbit
https://github.com/mgeeky/ThreadStackSpoofer
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MEM_PRIVATE  and EXECUTABLE  and roughly the size of our shellcode, then the memory

segment is encrypted with a XOR function and Sleep()  is called. Then Sleep()  returns,

it decrypts the memory segment and returns to it.

Another technique is to register a Vectored Exception Handler (VEH) that handles

NO_ACCESS  violation exceptions, decrypts the memory segments and changes the

permissions to RX . Then just before sleeping, mark the memory segments as NO_ACCESS ,

so that when Sleep()  returns, it throws a memory access violation exception. Because we

registered a VEH, the exception is handled within that thread context and can be resumed at

the exact same location the exception was thrown. The VEH can simply decrypt and change

the permissions back to RX and the implant can continue execution. This technique prevents

a detectible Sleep()  hook being in place when the implant is sleeping.

Mariusz Banach has also implemented this technique in ShellcodeFluctuation.

11. A custom reflective loader

The beacon shellcode that we execute in this loader ultimately is a DLL that needs to be

executed in memory. Many C2 frameworks leverage Stephen Fewer’s ReflectiveLoader. There

are many well written explanations of how exactly a relfective DLL loader works, and

Stephen Fewer’s code is also well documented, but in short a Reflective Loader does the

following:

1. Resolve addresses to necessary kernel32.dll  WINAPIs required for loading the DLL

(e.g. VirtualAlloc , LoadLibraryA  etc.)

2. Write the DLL and its sections to memory

3. Build up the DLL import table, so the DLL can call ntdll.dll  and kernel32.dll

WINAPIs

4. Load any additional library’s and resolve their respective imported function addresses

5. Call the DLL entrypoint

Cobalt Strike added support for a custom way for reflectively loading a DLL in memory that

allows a red team operator to customize the way a beacon DLL gets loaded and add evasion

techniques. Bobby Cooke and Santiago P built a stealthy loader (BokuLoader) using Cobalt

Strike’s UDRL which I’ve used in my loader. BokuLoader implements several evasion

techniques:

Limit calls to GetProcAddress()  (commonly EDR hooked WINAPI call to resolve a

function address, as we do in section 4)

AMSI & ETW bypasses

Use only direct system calls

Use only RW  or RX , and no RWX  ( EXECUTE_READWRITE ) permissions

Removes beacon DLL headers from memory

https://twitter.com/mariuszbit
https://github.com/mgeeky/ShellcodeFluctuation
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/boku7/BokuLoader
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
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Make sure to uncomment the two defines to leverage direct system calls via HellsGate &

HalosGate and bypass ETW and AMSI (not really necessary, as we’ve already disabled ETW

and are not injecting the loader into another process).

12. OpSec configurations in your Malleable profile

In your Malleable C2 profile, make sure the following options are configured, which limit the

use of RWX  marked memory (suspicious and easily detected) and clean up the shellcode

after beacon has started.

   set startrwx        "false"; 
   set userwx          "false"; 
   set cleanup         "true"; 
   set stomppe         "true"; 
   set obfuscate       "true"; 
   set sleep_mask      "true"; 
   set smartinject     "true"; 

Conclusions

Combining these techniques allow you to bypass (among others) Microsoft Defender for

Endpoint and CrowdStrike Falcon with 0 detections (tested mid April 2022), which together

with SentinelOne lead the endpoint protection industry.

https://github.com/boku7/BokuLoader/blob/055861a12871e2e7f3396dcac67e8ee40c46d757/BokuLoader64.c#L4
https://blog.sektor7.net/#!res/2021/halosgate.md
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CrowdStrike Falcon with 0 alerts.
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Windows Defender (and also Microsoft Defender for Endpoint, not screenshotted) with 0

alerts.

Of course this is just one and the first step in fully compromising an endpoint, and this

doesn’t mean “game over” for the EDR solution. Depending on what post-exploitation

activity/modules the red team operator choses next, it can still be “game over” for the

implant. In general, either run BOFs, or tunnel post-ex tools through the implant’s SOCKS

proxy feature. Also consider putting the EDR hooks patches back in place in our Sleep()

hook to avoid detection of unhooking, as well as removing the ETW/AMSI patches.

It’s a cat and mouse game, and the cat is undoubtedly getting better.

 

 


