Reversing Common Obfuscation Techniques 14/03/2022

@ ferib.dev/blog.php

Modern software often deploys obfuscation as part of its anti-tampering strategies to prevent
hackers from reversing critical components of the software. They often use multiple
obfuscation techniques to harden against hackers, kind of like a snowball. Adding more
layers of snow increases the size, making it a bigger pain in the ass to penetrate.

In this article, we will have a close look at two common obfuscation techniques to understand
how they work and figure out how to deobfuscate/undo them.

Project UnSnowman

1/16

https://ferib.dev/blog.php?l=post/Reversing_Common_Obfuscation_Techniques&t=t
https://ferib.dev/

That's right, we will be looking into the two different obfuscation techniques as listed below.

IAT Import Obfuscation

Before we start with the actual obfuscation of the IAT import table, let me explain what
imports really are.

What are imports?

One of the first things I'd like to figure out about a program when I'm reversing is where it
invokes the Operating System. In our case, we will focus on Windows 10 as most video games
are only working on a Windows-based operating system. Anyway, for those who didn't know
yet, Windows provides a bunch of important Dynamic Linked Library (DLL) files that almost
every Windows executable uses. These DLLs contain functions that can be 'imported’ by
Windows executables, allowing them to load and execute the function of a given DLL.

EE Imports [IDA View-A, Pseudocode-A . IDA View-B, Pseudocode-B . iE Pseudocode-C . iE Pseudocode-D . iE PseudocodeE . iE Pseudocod

Ad Ordinal

Why are they important?

Ntdll.dll for example is responsible for almost all memory-related functionality such as
opening a handle to a process (NtOpenProcess), allocating a memory page (NtVirtualAlloc,
NtVirtualAllocEx), querying memory pages (NtVirtualQuery, NtVirtualQueryEx), and a lot
more interesting stuff one may need.

Another such DLL is the ws2_ 32.dll, which is responsible for almost any network activity by
using one of the following functions:

* Socket

e Connect / WSAConnect

* Send / WSASend

e SendTo / WSASendTo

e Recv / WSARecv

e RecvFrom / WSARecvFrom

Now you may ask, what's the point of knowing this? Well, if you take a binary and throw it
into a disassembler such as IDA, the first thing a person like me does is check all the
imported functions to have a rough idea of what the binary is capable of. For example, when
ws2_32.dll is present in the imports then the binary may connect to the internet.

2/16

We may now want to take a deeper look and also check which ws2_32.dll functions are used.

If we take the Socket function and find out where it's called we can check its arguments,

allowing us to easily figure out which protocol and type are used after we google the function

name.

Ll =]
Xor
mov
Xor
mov
mowv
mowv
Mmons C E
mowv], di
push 2CX ; hostshort
call d

moY

mo
Mo

mov
push
push
push
mov
call
mov
cmp
jz

NOTE: IDA has automatically added comments to the disassembly.

Obfuscated Imports

Anyway, those Windows functions reveal quite a lot of information as they are well-

documented functions. Therefore one may want to hide its presence to hide what is going on.

All these imports you may see in your disassembler are loaded from the Import Address
Table (IAT), which is referenced somewhere inside the PE headers of the executable. Some
malware/games try to hide these import addresses by not pointing to the DLL function
directly. Instead, a trampoline or detour function may be used.

Examining our Sample

For this example, we are looking at a sample that is using a trampoline-ish obfuscation, as
you can see below:

3/16

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-socket

Address Bytes Opcode

19AA1040FE 48 BS A1106C050080FFFF ,FFFF8000056C 1041
19AA1040FEB EQ 43FTFFFF jmp 19AA1040738
19AA1040FFO 8C OF mov [rdi],cs

19AA1040FF2 6 db -3A

19AA1040FF3 8C 85 ODED4EEF mov [rbp-10B11F63]es
19AA1040FF9 A2 SASBAAEQSOEDSASE mov [SBSAEOSOEQAAZBSA]al
19AA1041002 7

Frotect:Execute/Read only AllocationBase=TFFTDSB50000 Base=TFFTDT7FSBO00 Size=

address ag 08 14

TEFFTDTFSBO0O Q000001921 0402D2 Q0000019AA10407FE
TFFIDTFSB0O20 Q0000019AA1040AF]1 Q0000019AA1040940 Q0000019AA1040TAE
TFFIDTFSB0O40 Q0000019AA10401CC Q0000019221 040654 Q0000019AR10402BF
TFFIDTFOB0O60 Q0000019AA1040035 Q0000019AA1050TAL Q0000019AA10502B5

The address below, 0x7FF7D7F9B000 which references our function 0x19AA1040FE1 is
looking completely different. You may think this is junk code, but have a good look and you
will find out it's not.

Take a good look at the first two instructions, starting with mov rax, FFFF8000056C10A1
followed by jmp 19AA1040738 , except everything after that is complete junk. Anyway, let's
take that jump and see where it takes us to:

Address Bytes Opcode

19441040738 48 35 33FF83CF ,FFFFFFFFCF83FF33
19447104073E 43 05 26993094 add rax, FFFFFFFF94309328
19441040744 48 05 0DD40871 add rax, 71080400
19447040744 ES 12010000 jmp 12447040861
194A47104074F 34 54 Xor al, 54

19447040751 94 09AASD4A SESE call (invalid) SESE:
19441040758 ED in eax, dx

1o

Protect:Execute/Read only AllocationBase=T7FFTDSB50000 Base=T7FFTDT7FSB000 Size=

address 0a 08 10

TFFTDTFSBOOO Q0000019ARA10402D2 Q00000159AR10407FE
TFF7D7FSB020 0000015AA1040AF1 Q00000158AR1040940 Q00000159AR10407AE
TFF7D7FSB0O40 0000015AA10401CC Q00000159AR1040654 Q0000015AR10402BF
TFF7D7FSB0O60 0000015AR1040035 Q0000018AR1 05071 Q00000159AR10502B5

Look at that, 4 more valid instructions, this time it's an XOR and 2 ADDs followed by yet
another jump. Let's repeat this process a few more times...

4/16

Address Bytes Opcode

19441040861 48 05 072424F0 , FFFFFFFFFO242407
19441040867 E9 73010000 jmp 19AA10409E1
194A104086C E6 BB out -44, al

194A104086E BA E331AT2E mov ecx, 2BAT31ES
19441040873 DE AB ACCSFESD fisubr [rbx+350FBC3AC]
19441040879 CA 4835 ret 3548

19AA104087C 8B 69 EA mov ebp,[roc-16]

add FO242+<

Protect:Execute/Read only AllocationBase=T7FFTDSB50000 Base=TFFTDTFSB0O00 S5ize=

address 0a 08 10

TEETDTFSBOOO Q000015AR1I0402D2 Q000019ARI0407FE
TEEFTDTFSB0O20 0000019aRA10404AF] Q000019AR1040940 Q000019ARI040T7ARE
TEEFTDTFSBO40 O0000019ARA10401CC Q000015AR1040654 Q000015ARI0402BF
TEFEFTDTFSBO60 O0000019AR1I040035 Q000019ARIO50TAL Q000019ARI0O502BS
Address Bytes Opcode

194410409E1 438 05 OFEETF95 add ,FFFFFFFF357FEEQF

1948710400E7 FF EQ jmp rax

19AA410409E9 1F pop ds

194410409EA C2 7256 ret 5672

19AA10409ED 54 pop rekx

194AA10409EE 87 D9 xchg ecx, ebx

19AA10409F0 Sh pop rolx

add SSTFEE

Protect:Execute/Read only AllocationBase=T7FFTDSB50000 Base=T7FFTDTFSB000 Size=

address 0a 08 10

TEFTDTFSBOOO Q0000019AR10402D2 Q000019AaR10407FE
TFFIDTFSB0O20 0000015AR1I040AF] Q000019AR1040940 Q000019AR10407AE
TFFTDTFSB0O40 0000015AR10401CC Q000019aR1040654 QQ000019AR10402BF
TFFTDTFSB0O&0 0000015AR1040035 Q000019AR10507A] Q000019AR105028B5

Finally, we reached a jmp rax instruction! In case you didn't notice, all the XOR, SUB, and
ADD instructions have been performed on that Rax register, meaning that this may contain
the actual pointer of our imported function. Let's do the math and find out.

5/16

Calculator

Programmer

| HEX T7FFF 55CD 6EEQ
DEC 140,734,632,914,656
OCT 3777 752 563 267 340
BIN
. mea - \"‘

<)2B + 7108D40D + FFFFFFFFF0242407 + FFFFFFFF9S7FEEOF +

TFFF 55CD 6EEO

0111 11171 1711 1111 0101 0107 1100 1107 0110 1110 1110

QWORD Ms

And indeed, after doing the math we obtain the pointer to ADVAPI32.RegOpenKeyEXA ,

cheers!

Address

Bytes

ADVAPI32.RegOpenKeyExA

ADVAPIZ2 . RegOpenkedd FF 25 90040600

Opcode

jmp qword ptr [

ADVAPI32.RegOpenkeCC int 3
ADVAPIZ2 RegOpenkeCC int 3
ADVAPI32.RegOpenke CC int 3
ADVAPI32.RegOpenke CC int 3
ADVAPIZ2 ReaOpenke CC int 3

address

Protect:Execute/Read/Write

TEEIDTESBO00
TEFEIDTFSBOZ0
TFEIDTEFSB040
TFEIDTEFSBO60

0ag

0000TFFFSSCDEEED

O000TFFFSSCDeDE0
O000TFFFSSCDeD20
O000TFFFSSCDeRAZ0

AllocationBase=T7FFTDSBES0000 Base=TFFTDTFSBO00 Size

08 10

O000TFFFSSCDERA40 O000TFFFSSCEESEOD
O000TFFFSSCEEE40 O000TFFFSSCEERED
O000TFFEFSSCDTOS0 0000TFFFSSCDB2ZCO
O000TFFFSSCDSF40 O000TFFFSSCD1IDZ0

Now, all we have to do is repeat this a few hundred times and we have completely

deobfuscated the IAT import tables.

Automated IAT Deobfuscation

I don't think any of you want to repeat this process by hand using the calculator, doing it
once was already a pain in the ass. From now on we will be using C# to automate the

calculations for us. As you may have seen we only faced ADD, SUB, and XOR operations that

were done on the same register. The reason for that is Rax is used as a return address
whereas registers such as Rex, Rdx, R8, Rg, and some others are not callee safe and may

6/16

conflict with the calling conventions. This means we won't even need a disassembler as we
can easily differentiate these instructions ourselves thanks to the minimal usage of registers
and opcodes.

I'm afraid I won't go into any more details as I explained the obfuscation technique in much
detail.

Control-Flow Obfuscation

Another valuable source of information while reversing a binary is the assembly instructions
themselves. For humans, they may be hard to understand, but for decompilers such as IDA,
we can simply press F5 and IDA will generate that oh-so-sweet pseudo-code that we humans
can understand.

One easy way to obfuscate the actual instructions is by using a combination of junk-code
together with opaque branching. What this means is that you put junk code right after a
branch instruction. The trick is that you use a conditional jump, however, you make sure that
the condition is always true so the branch is always taken. What the disassembler doesn't
know is that the conditional jump will always be true at runtime, making it believe both sides
of the conditional jump can be reached during runtime.

Okay if you're not quite following then let me show you some visuals to help you understand.
The first image shows jbe which lands inside another instruction.

nap
stc
Mo
jbe

1=

yte 148291F54, ah

nop dword ptr [raxtraxt

NOTE: The red marked bytes are junk code.

7/16

Now take a deep look at the second image below, all I did here was NOP the two bytes of the
last instruction so that my IDA reveals the hidden instruction underneath the and
[rdx+24448B48h], bh instruction.

stc
Mmoo on 3 on

jbe short loc_ 148208F4B

add
mow
add
jz

1o c_l482
Mo
and
Mo
nop

We may also patch the conditional jump with an unconditional one to make sure IDA won't
fall for it again.

Before we continue I would like to show one last example as the previous one was a very basic
one. Things become a lot more complicated when you start chaining these obfuscated jumps
into each other, as you can see in the image below.

8/16

This image only shows the chaos it creates in the control flow, but just imagine how hard my
CPU was suffering while IDA did its very best to create this graph based on junk instructions.

Now you may wonder what the deobfuscated functions look like? I'm glad you asked!

9/16

e = IDA View-A

64_00% | (8117,626007) | (540,412) 0070AS4R 000000014070B344: sub 14070B340+4| (Synchrd

See that little blue arrow I drew on the left side? that shows what the right part is zoomed in
on. Now have a look at the right side and you will see seven deobfuscated jumps in just that
small part of the function. Just imagine how much time one would need to deobfuscate this
manually or semi-automated (IDA script to NOP jmp). Doing that one by hand using an IDA
script took me already 40 minutes... and that's just for one damn function. Imagine how
many other functions I would need to do to find what I was actually looking for!

Automated Control-Flow Deobfuscation

Okay, so now that we have a good understanding of how it works we just need to automate it.
As I mentioned before, I used an IDA Script before to just patch the unconditional jumps and
NOP slide the junk out.

However, this still took me 40 minutes to clean as the hardest part was to identify the opaque
branches. So how do we solve this? You may think we should examine every conditional jump
and check if it's opaque, then NOP slide and repeat? WRONG!

10/16

Let me tell you a secret, we don't give a shit about what's opaque or whatnot. All I really care
about is that my IDA can give me decompiled code when I hit F5, which indeed won't happen
as long as these obfuscated jumps force junk to collide into real assembly instructions.

But does that mean we need to figure out if a conditional jump is opaque or not? nope, all we
need to do is check if the jump collides inside an existing instruction and then patch out that
instruction as seen in our first example.

DeFlow Deobfuscation Algorithm

Now that we know how to solve the issue we can start diving into the algorithm I came up
with to deobfuscate all instances for this kind of obfuscation.

11/16

List<ulong> _alreadyDiscovered;

// Buffer is a copy of the .text section
function Deflow(byte[] buffer, ulong[] functions)
for(int i = ©; i < functions.Length; i++)
do
int newDiscovered = 0;
List<ulong> chunks = DeflowChunk(buffer, functions[i]);
while(chunks.Count != 0)
List<ulong> newChunks;
foreach(var c¢ in chunks)
newChunks.AddRange (DeflowChunk(buffer, c));
newDiscovered += chunks.Count;
chunks = newChunks;
while (newDiscovered != 0)

function DeflowChunk(address)
List<ulong> newChunks;

// 63th bit indicates if this address was extracted from a negative jump or not
bool isNegative = address >> 63 == 1;
address &= 1 << 63;

// Check if already discovered
if(_alreadyDiscovered.Contains(address))

return newChunks;

_alreadyDiscovered.Add(address);

ulong lastBranch = 0; // Indicates our last conditional jump address

ulong lastBranchSize = 0; // Size of the last conditional jump address

ulong lastTarget = 0; // Target location of the last conditional jump

int stepsLeft = 0; // Steps (bytes) left to reach lastTarget from current
address

// Usage of SharpDisasm
var disasm = new Disassembler (buffer, address - base); // NOTE: base = BaseAddress
+ .text offset

foreach(var insn in disasm.Disassemble())
ulong target = 0;
ulong lastAddrStart
bool isJmp = true;

switch(insn.Mnemonic)
// Stop analysing when we encounter a invalid or return instruction while we
have no lastTarget
case ud_mnemonic_code.Invalid:
case ud_mnemonic_code.Ret:
if(lastTarget == 0)
return newChunks; // Only accept when no lastTarget as we may be looking at
junk code
break;
case ud_mnemonic_code.ConditionalJump: // all conditional jumps

12/16

if(lastTarget == 0)
target = calcTargetJump(insn); // Helper to extract jump location from
instruction

if(!isInRange(target)) // Helper to see if target address is located in our

Buffer
isJmp = false;
break;
// Check if instruction is bigger then 2, if so it wont be obfuscated but
we

// do want to analyse the target location
if(insn.Length > 2)
isJmp = false;
newChunks.Add(target);
break;
else
isJmp = false; // Do not this conditional jump accept while we already
// have a target (might be looking at junk code)
break;
case ud_mnemonic_code.UnconditionalJump:
case ud_mnemonic_code.Call:
if(lastTarget == 0)
ulong newAddress = calcTargetJump(insn); // Helper to extract jump location
from instruction

if(!isInRange(newAddress))
isdmp = false;
break;

// Add target and next instruction IF not JMP (CALL does return, JMP not)
if(insn.Mnemonic == ud_mnemonic_code.Call)
newChunks.Add(address + insn.PC);

// Add instruction target for further analyses
newChunks.Add(newAddress);
return newChunks;

break;

// quick mafs
ulong location = (address+insn.Offset);
stepsLeft = (int)(lastTarget - location); // Only valid if we have a lastTarget!

// Setup a new target if current instruction is conditional jump while there is
no lastTarget
if(lastTarget == 0 && isJmp)
lastBranch = loction;
lastBranchSize = insn.Length;
lastTarget = target;
else if (stepsLeft <= 0 && lastTarget != 0)
// if stepsLeft isn't zero then our lastTarget is located slighlt above us,
// meaning that we are partly located inside the previous instruction and thus
we are hidden (obfuscated)
if(stepsLeft !'= Q)

13/16

int count = lastTarget = lastBranch; // calculate how much bytes we are in
the next instruction

if(count > 0)
// making sure we are a positive jump
int bufferOffset = lastBranch - base; // subtract base from out address so
we can write to our local buffer

// NOP slide everything except our own instruction
if(int 1 = ©; i < count - lastBranchSize; i++)
buffer[bufferOffset + lastBranchSize + i] = isNegative ? 0x90 : OxCC; //
We use NOP for negative jumps

//
and int3 for positive

if(!isNegative)
buffer[bufferoffset] = OxEB; // Force unconditional Jump

// add next instruction for analyses and exit current analysis
newChunks.Add(lastTarget);
return newChunks;

else
// we are a negative jump, set 63th bit to indicate negative jump
lastTarget = |= 1 << 63;

// add target to analyser and exit current analysis
newChunks.Add(lastTarget);
return newChunks;
else
// stepsLeft was zero, meaning there is no collision
// add both target address and next instruction address so we can exit
current analysis

newChunks.Add(lastBranch + lastBranchSize);

newChunks.Add(lastTarget);

return newChunks;

return newChunks;

NOTE: this is pseudo-code, I am aware it doesn't run! (seriously)
Pretty big huh? little more difficult to understand than the IAT Import deobfuscation as we
used an actual disassembler library to get the size and mnemonic of each instruction. Using

the disassembler is almost a must as we also had to figure out if an instruction collided with
each other.

There are plenty of comments in the pseudo-code to give you a better understanding of how
things should work. ¥eurmaynow-also-take-alookatthereal{Deflow-algorithm)used-in-the

Unsnowmanrepo-:

DeFlow Algorithm Explained

The main function will keep track of already discovered chunks while it recursively invokes
DeflowChunk for the linear disassembly. Keeping track of newly discovered chunks is done
through lists and loops as it would trigger a StackOverflow due to the high amount of

14/16

branching instructions that can be done in a single block.

The DeflowChunk will first check if we encounter a given branching instruction and
perform one of the following actions if so

e Ret -Stopifno lastTarget isset
e Invalid -Stopifno lastTarget is set
e ConditionalJump - Calculate target address and follow if in range of our buffer
e UnconditionalJump - Calculate target address and save for further analysis if in
range of our buffer
Call - Calculate target address and save for further analysis if in range of our buffer

In case we don't have a lastTarget set we will check if the current instruction is a
ConditionalJump thatjumps within the range of our buffer (isJmp flag) and set the
lastTarget to the destination of the ConditionalJump .

Once we have such lastTarget we take our current instruction pointer and subtract it by
lastTarget to calculate how many more bytes we need to disassemble (stepsLeft).

After calculating the stepsLeft we check if the value equals zero. If the value is above zero
we will continue the linear disassembly.

When the stepsLeft is below zero it means that the assembly has collided with the next
instruction. This most likely means that our last ConditionalJump that was responsible for
setting our lastTarget is an opaque condition, meaning our current chunk will most likely
never be executed and is instead used to overlap the next few legit assembly instructions.

We can fix this by patching the first byte of our ConditionalJump to 0xEB , making it an
UnconditionalJump . To clean things up a little more we also patch all bytes between the
last ConditionalJump and lastTarget .

This process is then repeated multiple times for every call or conditional jump it finds during
its linear disassembly process.

Conclusion

Not only malware but also legitimate software like video games tend to use these kinds of
obfuscation techniques to hide as much valuable information in the hope to prevent the
reversal of the software. However, as you have seen we have successfully deobfuscated these
two techniques and were able to reveal all hidden information.

Originally I was going to benchmark a popular video game where one instance is the original
binary and then benchmark again but with a deobfuscate binary - which should use fewer
resources due to removal of junk and opaque branching - to then see how much of a

15/16

performance impact these obfuscation techniques have. But due to my legal history, I
decided not to do so.

Anyway, we can still conclude that these obfuscation techniques do a very good job of wasting
my valuable time, which is a good way to prevent people from reversing software. On top of
that, the Deflow algorithm itself takes several minutes/hours (depending on the file size) to
deobfuscate the complete control flow of a binary.

With that being said I hope you learned something from my journey.

Oh and for those who didn't notice, or in case you scrolled all the way down to find a
download link... yotean-find-the Unsnowman-sotiree-code-at-my-GitHub;cheers!
You can study the DeFlow pseudo-code instead ;)

Have something to say?

Contact me at admin@Rferib.be

More Articles

16/16

https://github.com/ferib/Unsnowman
mailto:admin@ferib.be
https://ferib.dev/portfolio.php?t=Blog+post

