
1/11

Usman Sikander March 11, 2022

AV/EDR Evasion Using Direct System Calls (User-Mode
vs kernel-Mode)

medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a

Usman Sikander

Modern AVs and EDRs use a variety of approaches to accomplish both static and dynamic
analysis. They can examine many signatures, such as recognized strings, hashes, and keys,
to see if a file on disc is malicious. Attackers, on the other hand, have created a large
number of obfuscation methods, rendering static analysis nearly worthless.

Modern EDRs are primarily concerned with dynamic/heuristic analysis, which means they
can track the behavior of every process on the system in search of suspicious activity. As a
result, we can download dangerous files that our EDR will not be able to identify if they have
been obfuscated. The EDR, on the other hand, will detect and prevent malware once it has
been started. Most AVs, EDRs, and sandboxes employ user-landed hooks, allowing them to
monitor and intercept every user-land API request. They won’t be able to follow us if we run
a system call and enter kernel mode!

The issue arises when we learn that system call numbers differ across OS versions and even
amongst service build numbers… There is, however, a library called inline syscall that may
be used to scrape the in-memory NTDLL module and retrieve the syscall numbers.

The issue here is that this module would scrape the syscall number via Windows API calls.
We will be unable to get the right number if an AV/EDR hooks these functionality.

Another solution which I’ll explain in this blog is the use of Syswhispers. SysWhispers
helps with evasion by generating header/ASM files implants can use to make direct system
calls.

SysWhispers1 vs SysWhispers2

The usage is almost identical to but you don’t have to specify which versions of Windows to
support. Most of the changes are under the hood. It no longer relies on’s , and instead uses
the “sorting by system call address” technique popularized by . This significantly reduces the
size of the syscall stubs.

https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a
https://medium.com/@merasor07?source=post_page-----fad2fdfed01a--------------------------------
https://medium.com/@merasor07?source=post_page-----fad2fdfed01a--------------------------------
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/


2/11

The specific implementation in SysWhispers2 is a variation of @modexpblog’s code. One
difference is that the function name hashes are randomized on each generation. , who had
this technique earlier, has another implementation based in C++17 which is also worth
checking out.

The original SysWhispers repository is still up but may be deprecated in the future.

API Hooks and Windows Architecture

Hooking is a method used by AV/EDRs to intercept a function call and redirect the code flow
to a controlled environment where they can analyze the call and decide whether or not it is
malicious. Looking at the Windows Architecture, we can see that the interaction between the
OS’s surface and depths is managed by a library named NTDLL.DLL. The Native API
(NTDLL.DLL) serves as the primary interface between user-mode applications and the
operating system. As a result, every program will use it to interface with the operating
system. NTDLL.DLL, for example, contains widely used Native APIs such as ZwWriteFile.
When a process starts, it loads a number of DLLs into its memory address space. AV/EDRs
can change the assembly instructions of a function within a loaded DLL and insert an in
conditional jump at the start that leads to the EDR’s code.

https://github.com/crummie5/FreshyCalls


3/11

USER AND KERNEL MODE

Virtual memory and privilege levels are used in modern operating systems to segregate
executing processes from one another. For operating processes, Windows OS has two
privilege levels: kernel-mode and user-mode. Using this method, Windows ensures that apps
are segregated and that they cannot directly access crucial memory portions or system
resources, which is extremely insecure and may result in system crashes. When the
programme wants to perform a privileged action, the CPU enters kernel mode. Syscalls
enable any software to enter kernel mode and conduct privileged activities such as file
writing. We’ll utilise the previously described Win32 API method WriteFile as an example.

When a process, attempts to write a file, it will invoke WriteFile, a user-land API function.

Shellcode Injection using Windows API’s



4/11

As a malware developer, everybody know common ways to inject a shellcode into process.
Windows API calls VirtualAllocEx, WriteProcessMemory, CreateRemoteThread are
commonly invoked by attacker to perform shellcode injection. This will allocate a memory
space in which we will write our shellcode. After that, we will create a remote thread and wait
for it to finish its execution.

Firstly, I created a shellcode using msfvenom to inject into remote process. I am injecting
shellcode into NOTEPAD.EXE. Shellcodes is just a message box which is displaying “Hi,
From Red Team Operator”

msfvenom -p windows/x64/messagebox TEXT=”Hi, From Red Team Operator” -f
csharp > output.txt



5/11

I am using windows API’s to inject shellcode into process. I want to show that AV/EDR
hooked these API’s and are able to detect it. When a program allocate a memory in process
and make it executable and writeable a same time it looks suspicious. For creating memory,
writing shellcode and executing it into memory we are using Windows API’s so it pretty sure
that AV/EDR’s will detect it.

I am injecting generating shellcode into notepad.exe. For this purpose, We need process
name or process id. So I am getting pid of notepad.exe.

After successfully compiling, When I executed my program it caught by Windows Defender.



6/11

This is caught by Windows Defender, because this time I am using Windows API’ s and all
AV/EDR are hooked on user-land API’s, So it is very easy to detect such malicious program
which is using windows API calls to perform this type of malicious activity.

Shellcode Injection using syscalls

I used same generated shellcode into a program which is using direct syscalls to allocate
memory, writing shellcode into process. I used SysWhispers2 which is dynamically resolving
syscalls number. SysWhispers1 is relying on windows version that’s why SysWhispers2
came into ground.

GitHub - jthuraisamy/SysWhispers2: AV/EDR evasion via direct
system calls.

SysWhispers helps with evasion by generating header/ASM files implants
can use to make direct system calls. All core…

github.com

Microsoft Windows System Call Table
(XP/2003/Vista/2008/7/2012/8/10)

Author: Mateusz "j00ru" Jurczyk (j00ru.vx tech blog) See also: Windows
System Call Tables in CSV/JSON formats on GitHub…

j00ru.vexillium.org

https://github.com/jthuraisamy/SysWhispers2?source=post_page-----fad2fdfed01a--------------------------------
https://j00ru.vexillium.org/syscalls/nt/64/?source=post_page-----fad2fdfed01a--------------------------------


7/11

Common Functions

Using the –preset common switch will create a header/ASM pair with the following functions:

NtCreateProcess (CreateProcess)
NtCreateThreadEx (CreateRemoteThread)
NtOpenProcess (OpenProcess)
NtOpenThread (OpenThread)
NtSuspendProcess
NtSuspendThread (SuspendThread)
NtResumeProcess
NtResumeThread (ResumeThread)
NtGetContextThread (GetThreadContext)
NtSetContextThread (SetThreadContext)
NtClose (CloseHandle)
NtReadVirtualMemory (ReadProcessMemory)
NtWriteVirtualMemory (WriteProcessMemory)
NtAllocateVirtualMemory (VirtualAllocEx)
NtProtectVirtualMemory (VirtualProtectEx)
NtFreeVirtualMemory (VirtualFreeEx)
NtQuerySystemInformation (GetSystemInfo)
NtQueryDirectoryFile
NtQueryInformationFile
NtQueryInformationProcess
NtQueryInformationThread
NtCreateSection (CreateFileMapping)
NtOpenSection
NtMapViewOfSection
NtUnmapViewOfSection
NtAdjustPrivilegesToken (AdjustTokenPrivileges)
NtDeviceIoControlFile (DeviceIoControl)
NtQueueApcThread (QueueUserAPC)
NtWaitForMultipleObjects (WaitForMultipleObjectsEx)

I worked mostly on ubuntu, so I was facing problem related to ASM/Header pair generated
by SysWhispers2. Because Assemble format for MASM in different but to compile it with
Mingw-w64 we need different assembly format. So I really thanks to whoadded x86 (Wow64
& Native) support, NASM ASM, and refactored the existing assembly. It’s now possible to
compile using MinGW and NASM from the command line.

I developed a malware which is using direct syscalls to inject msfvenom generated shellcode
into process. This time I am using direct syscalls to perform all step such as creating
memory, writing shellcode into remote process.



8/11

Each of the mentioned Win32 API calls has an equivalent syscall:

VirtualAlloc -> NtAllocateVirtualMemory
WriteMemoryProcess -> NtWriteVirtualMemory
CreateRemoteThread -> NtCreateThreadEx

I used for generating ASM/Header pair for my above mentioned syscalls. This will generate
nasm file which will be compiled using mingw-64 and NASM assembler.

x86_64-w64-mingw32-gcc -m64 -c implant.cpp syscalls.c -Wall -sharednasm -f win64 -o 
syscallsx64stubs.o syscallsx64stubs.nasmx86_64-w64-mingw32-gcc *.o -o temp.exe

you just need to copy the syscalls.c, syscalls.h and syscallsstubs.nasm file into your
projcet directory and include “syscalls.h” into your project. Because I am using Mingw to
compile it that’s why I am using NASM assembler. if you want MASM, you need to copy
syscallsstubs.asm file and change customized setting of your project in visual studio. All
steps are explained by .

This time I am using syscalls to bypas AV/EDR. I am using direct syscalls numbers and
switching into kernel to bypass user-land hooking.



9/11

After Successfully compilation, When I executed my malware in the presence of Windows
defender I was able to bypass static and dynamic detection. I am using random variable and
function names in my project. This is because, earlier when I was developing malware, I
used Unsigned Char Shellcode[] toinitialize my shellcode. My malware was caught by
Windows defender. I encrypted my shellcode, obfuscated API calls but still after touching
disk it caught by MDE. After some work, I came to know that it is catching my malware on
this keyword ShellCode[]. So Antiviruses sometimes can do this type of shits. So to
statically change the signature, I always change the variable and function names of my
malware dynamically.

This time windows defender didn’t caught my malware. Because I am using direct syscalls.
So by using direct syscalls, you can bypass AV/EDR user-land hooking.



10/11

I uploaded my binary on AntiScan.me and it is not flagged by any antivirus. This result is
maybe by using direct syscalls or anti-sandbox techniques used by me in my malware such
as processor speed, ram size and processor numbers. But I ran this malware against
different AV/EDR and I was able to bypass static and dynamic analysis.

Importance of encryption in shellcode Injection

As a red teamer, I cannot rely on open-source tools and shellcode generator. Let’s take an
example of msfvenom shellcodes. The shellcodes generated by msfvenom are highly
detected by AV/EDR. if you are using plain shellcode into your malware, it will be caught by
antivirus in static analysis. So At least to bypass static analysis of your msfvenom generated
shellcodes you need strong encryption. I mostly used AES-256 encryption and I was able to
bypass MetaSploit generated shellcode.

CONCLUSION

We will now be able to run Meterpreter without being stopped by the AV/EDR using direct
syscalls. As is customary, this approach will most likely be rendered obsolete in the future as
AV/EDR detection techniques improve. This piece, on the other hand, has taught me some
intriguing things about how Windows APIs and current AV/EDRs function.

Related Links:



11/11

GitHub - xenoscr/SysWhispers2: AV/EDR evasion via direct system
calls.

SysWhispers helps with evasion by generating header/ASM files implants
can use to make direct system calls. All core…

github.com

A tale of EDR bypass methods

In a time full of ransomware as well as Advanced persistent Thread (APT)
incidents the importance of detecting those…

s3cur3th1ssh1t.github.io

Red Team Tactics: Combining Direct System Calls and sRDI to
bypass AV/EDR | Outflank Blog

In this blog post we will explore the use of direct system calls, restore
hooked API calls and ultimately combine this…

outflank.nl

Offensive-Panda - Overview

You can't perform that action at this time. You signed in with another tab or
window. You signed out in another tab or…

github.com






https://github.com/xenoscr/SysWhispers2/?source=post_page-----fad2fdfed01a--------------------------------
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/?source=post_page-----fad2fdfed01a--------------------------------
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/?source=post_page-----fad2fdfed01a--------------------------------
https://github.com/Offensive-Panda?source=post_page-----fad2fdfed01a--------------------------------

