
1/5

research.checkpoint.com /2022/invisible-cuckoo-cape-sandbox-evasion/

Invisible Sandbox Evasion - Check Point Research
⋮ 2/7/2022

February 7, 2022

Research By: Alexey Bukhteyev

Malware uses sandbox evasion techniques to avoid exposing its malicious behavior inside a sandbox
and thus prevent detection.

Figure 1 – Sandbox evasion techniques.

Common evasion techniques include the use of specific assembly instructions, and looking for specific
registry keys or file names. Such evasion techniques can be easily discovered by an experienced
analyst, or even detected by a sandbox using signatures.

Figure 2 – Cuckoo Sandbox signatures detected evasion techniques.

Are there any evasion techniques that completely look like regular code and can’t be easily detected?
Due to issues we found in the Cuckoo monitor, it is indeed possible. CAPE sandbox is affected as well.
We should emphasize that Cuckoo Sandbox and CAPE are the common open source sandbox

https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://evasions.checkpoint.com/techniques/cpu.html
https://evasions.checkpoint.com/techniques/registry.html
https://evasions.checkpoint.com/techniques/filesystem.html

2/5

environments used in the research and protection area. Therefore, the discovered evasion techniques
may affect many researchers and companies. Although we’ve only tested in Cuckoo and CAPE, the
described techniques may be applicable to other sandboxes as well.

Check Point Research reported these issues to CAPE developers, who immediately implemented fixes to
mitigate sandbox evasion techniques described in this article.

Cuckoo Sandbox evasion in one Windows API function call
There are more than 400 Native API functions (or Nt-functions) in ntdll.dll that are usually hooked in
sandboxes. In such a large list, there is enough space for different kinds of mistakes. We checked the
hooked Nt-functions and found several issues.

One of them is a discrepancy in the number of arguments in the hooked and the original NtLoadKeyEx
function. If a function is hooked incorrectly, in kernel mode this may lead an operating system to crash.
Incorrect user-mode hooks are not as critical. However, they may lead an analyzed application to crash
or can be easily detected.

Let’s look at the NtLoadKeyEx function. This function was first introduced in Windows Server 2003 and
had only 4 arguments:

; Exported entry 235. NtLoadKeyEx

; Exported entry 1072. ZwLoadKeyEx

; __stdcall NtLoadKeyEx(x, x, x, x)

public

Later on, this function changed significantly. Starting from Windows Vista up to the latest version of
Windows 10, it has 8 arguments:

; Exported entry 318. NtLoadKeyEx

; Exported entry 1450. ZwLoadKeyEx

; __stdcall NtLoadKeyEx(x, x, x, x, x, x, x, x)

public

However, in the Cuckoo monitor, the NtLoadKeyEx declaration still has only 4 arguments:

* POBJECT_ATTRIBUTES TargetKey

* POBJECT_ATTRIBUTES SourceFile

** ULONG Flags flags

** HANDLE TrustClassKey trust_class_key

We found this legacy prototype used in other sources as well. For example, CAPE monitor has the same
issue:

extern HOOKDEF(NTSTATUS, WINAPI, NtLoadKeyEx,

 __in POBJECT_ATTRIBUTES TargetKey,

 __in POBJECT_ATTRIBUTES SourceFile,

 __in ULONG Flags,

https://research.checkpoint.com/cdn-cgi/l/email-protection
https://research.checkpoint.com/cdn-cgi/l/email-protection
https://github.com/cuckoosandbox/monitor/blob/master/sigs/registry_native.rst#ntloadkeyex
https://github.com/ctxis/capemon/blob/capemon/hooks.h#L710

3/5

 __in_opt HANDLE TrustClassKey

);

Therefore, if a sandbox uses any recent Windows OS, this function is hooked incorrectly. After the call to
the incorrectly hooked function, the stack pointer value becomes invalid. Therefore, a totally “legitimate”
call to the RegLoadAppKeyW function, which calls NtLoadKeyEx, leads to an exception. This fact can
be used to evade Cuckoo and CAPE sandbox with just a single call to this function.

The evasion technique is quite straightforward. If we want to hide some code when running in a sandbox,
we should call the RegLoadAppKeyW with valid arguments before this code. In a sandbox, this code will
not be reached due to the exception.

RegLoadAppKeyW(L"storage.dat", &hKey, KEY_ALL_ACCESS, 0, 0);

// If the application is running in a sandbox an exception will occur

// and the code below will not be executed.

// Some legitimate code that works with hKey to distract attention goes here

// ...

RegCloseKey(hKey);

// Malicious code goes here

// ...

printf("Some malicious code");

Figure 3 – Cuckoo Sandbox behavioral analysis report.

Instead of using RegLoadAppKeyW, we can call the NtLoadKeyEx function directly and check the ESP
value after the call. If we want to prevent the application from crashing in the case of an exception inside
of the hooked NtLoadKeyEx function, the exception handling can also be added.

__try

{

 _asm mov old_esp, esp

 NtLoadKeyEx(&TargetKey, &SourceFile, 0, 0, 0, KEY_ALL_ACCESS, &hKey,

&ioStatus);

 _asm mov new_esp, esp

 _asm mov esp, old_esp

 if (old_esp != new_esp)

 printf("Sandbox detected!");

}

__except (EXCEPTION_EXECUTE_HANDLER)

{

4/5

 printf("Sandbox detected!");

}

Now that you know what to look for, you won’t be tripped up by this evasion technique.

Lack of necessary checks for arguments in a hooked function
Another issue we found in Cuckoo Sandbox and CAPE is a lack of the necessary checks for all
arguments in hooked functions.

For example, let’s look at a very frequently used function, NtDelayExecution, which is called every time
you call the Sleep function.

NTSTATUS

NTAPI

NtDelayExecution(

 IN BOOLEAN Alertable,

 IN PLARGE_INTEGER DelayInterval);

The second argument of the NtDelayExecution function is a pointer to the delay interval value. In the
kernel-mode, the NtDelayExecution function validates this pointer and can also return the following
values:

STATUS_ACCESS_VIOLATION – If the pointer value is not a valid user-mode address.
STATUS_DATATYPE_MISALIGNMENT – If the address is not aligned (DelayInterval & 3 != 0).

In a sandbox, the input arguments for NtDelayExection and similar functions might not be handled
correctly. If we call NtDelayExecution with an unaligned pointer for DelayInterval, normally it returns the
STATUS_DATATYPE_MISALIGNMENT. However, in a sandbox, the value for DelayInterval may be
copied to a new variable without the appropriate checks. In this case, a delay is performed and the
returned value will be STATUS_SUCCESS. This can be used to detect a sandbox:

__declspec(align(4)) BYTE aligned_bytes[sizeof(LARGE_INTEGER) * 2];

DWORD Timeout = 10000; //10 seconds

PLARGE_INTEGER DelayInterval = (PLARGE_INTEGER)(aligned_bytes + 1);

//unaligned

DelayInterval->QuadPart = Timeout * (-10000LL);

if (NtDelayExecution(TRUE, DelayInterval) != STATUS_DATATYPE_MISALIGNMENT)

 printf("Sandbox detected");

On the other hand, if an inaccessible address is set for DelayInterval, the return code should be
STATUS_ACCESS_VIOLATION. This can be used to detect a sandbox as well:

if (NtDelayExecution(FALSE, (PLARGE_INTEGER)0) != STATUS_ACCESS_VIOLATION)

 printf("Sandbox detected");

If the DelayInterval argument is not verified before it is accessed, this may lead to an exception in the
case of using an invalid pointer. For example, the next code leads the Cuckoo monitor to crash:

5/5

NtDelayExecution(FALSE, (PLARGE_INTEGER)0xFFDF0000);

As stated earlier, normally this call should return STATUS_ACCESS_VIOLATION without causing an
exception.

These and many other techniques are described in our updated Malware Evasion Encyclopedia. You can
also check if your sandbox is affected by sandbox evasion techniques using the InviZzzible tool.

Check Point’s Threat Emulation protects against the evasion.

https://evasions.checkpoint.com/
https://github.com/CheckPointSW/InviZzzible
https://www.checkpoint.com/infinity-vision/zero-day-protection/

