
1/11

TTPs: JmpNoCall
steve-s.gitbook.io/0xtriboulet/ttps/ttps-jmpnocall

Part One: Introduction

Over the past couple of weeks, there has been some interesting work regarding call stack

tracing evasion by @NinjaParanoid. His technique used some cool APIs and callback

functions to achieve clean call stacks and reduce detectability.

The problem is that most implant implementations execute code out of a RX sections of

memory. This functionality can be detected by EDR when API calls or syscalls return to RX

sections of memory.

​https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/​

That got me interested in the topic, but I wanted a more customized solution. A significantly

advanced threat actor is likely using custom payloads to execute tailored actions specific to

their campaign, so we're going to utilize a different technique to achieve clean call stacks.

The technique I developed uses assembly ramps to jmp to our functions, without using the

"call" instruction. We're going to do this by using a combination of inline assembly, an

assembly onRamp, and a custom payload.

Note: for demonstration purposes, the allocated section of memory we'll use in this writeup

uses RWX permissions, but the final code available on my GitHub implements this technique

with RX permissions

Part Two: Getting Started

So to start, we have to develop a way to get the address we want to return to at run time. We

develop the following code and run in in x64dbg to validate that we are capturing the correct

address:

https://steve-s.gitbook.io/0xtriboulet/ttps/ttps-jmpnocall
https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/


2/11

#include <stdio.h>

#include <Windows.h>

​

// x86_64-w64-mingw32-g++.exe implant.cpp -o implant.exe -masm=intel

// implant_backup_1.cpp

/* Reference

asm ( "assembly code"

: output operands optional

: input operands optional

: list of clobbered registers optional

);

*/

extern "C" void onRamp(PVOID exec_mem, PVOID ret_addr);

int main(void){

printf("Implant running...\n");

void * ret_addr = NULL;

asm("lea %0, [rip+ReturnHere];"

: "=r" (ret_addr) // ret_addr <- rip+ReturnHere

:	// no inputs

: // no predefined clobbers

);

printf("Return address: %p\n",ret_addr);	// get return address

asm("ReturnHere:;");	//ret_addr

printf("Exiting implant...\n");

}



3/11

And x64dbg shows us that our technique works!

Part Three: Executing a payload

We can build a rudimentary assembly onRamp to call our payload

We can implement an implant that uses this ramp and a standard msfvenom calc payload

like so:



4/11

implant_backup_2.cpp

But even though we can achieve payload execution, we are not able to recover cleanly



5/11

This is because the msfvenom payload we're using does not clean up the stack and return

properly. There's another issue with this payload. The msfvenom payload uses several "call"

opcodes that are going to be problematic for our call stack sanitization, no matter how clever

we are with our onRamp.

Luckily for us, there is a robust calc payload implementation developed by @0xboku that we

can use and customize with nasm so that we can achieve clean call stack execution.



6/11

​https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-

Shellcode/blob/main/win-x64-DynamicKernelWinExecCalc.asm​

Part Four: Building the payload

Now that we have a robust method of payload execution, we can build custom on/off ramps

to achieve clean call stack code execution, and customize our payload to leverage the ramps

This custom payload only has two "call" instructions, so we should be able to quickly patch

those to achieve code execution without valid call stack traces! We also see that in its existing

implementation, we execute our payload

If we take a look at the x64 convention, we can see that the several registers are listed as

nonvolatile, which means we can expect any function call we make with to preserve the

value(s) stored in those registers

Now that we know that, we also know that our payload does not use the r13 and r15 registers

at any point, which seems like the perfect places to store our return values.

https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode/blob/main/win-x64-DynamicKernelWinExecCalc.asm


7/11

Once we've built the on ramp, we need to make a couple of modifications to our payload in

order to retain its functionality.

For the time being, we'll use an interrupt offRamp.

The first is replacing the "call r14" instruction with a push+jmp

instruction

The second change is to patch up the other call instruction, all the changes are visible in the

screenshot below. It's important to remember that you'll have to change some prologues in

order to keep the stack organized after removing the call instructions.



8/11

And if we run this code, we see that it works!



9/11

Part Five: Cleaning up

Now, our offRamp function needs to clean up the stack. Currently the stack looks like this:

But we know that the we can pop everything off the stack until rsp = r13, so lets implement

that in our offRamp function

Now when we land on the interrupt, our implant is ready to return to main()



10/11

Our final version of offRamp looks like this:

Based on our source code, we know that if we succeeded, we should see the "Exiting

implant…" message in our console. And we have a working program!



11/11

Scrutinizing our stack throughout program execution, we can see that x64dbg correctly sees

that we made this call from our payload, x 0x…2850 but we're returning to a regular .text

section of memory!

The return "To" address is within the range of our .text section

Part Six: Conclusion

This methodology can be a little clunky, but it provides a lot of non-standard functionality

that may not be immediately obvious. The onRamp() function takes in a return_address

variable that could have been pulled from the stack because we properly call onRamp(). That

technique is certainly viable, but by deliberately passing in our desired return_address as a

function argument we can actually return anywhere that we want and thereby obfuscate

control flow analysis of our program.

The technique is not perfect, and it requires custom payloads that work in concert with the

onRamp/offRamp functions in order to function properly. This technique will probably never

gain significant mainstream attention because of those limitations. However, it's still a cool

technique and it's something very possible to implement using the methods above.

References








