
1/6

January 28, 2022

The good, the bad and the stomped function
idov31.github.io/2022/01/28/function-stomping.html

STAR FORK FOLLOW

Introduction

When I first heard about ModuleStomping I was charmed since it wasn’t like any other

known injection method.

Every other injection method has something in common: They use VirtualAllocEx to allocate

a new space within the process, and ModulesStomping does something entirely different:

Instead of allocating new space in the process, it stomps an existing module that will load the

malicious DLL.

After I saw that I started to think: How can I use that to make an even more evasive change

that won’t trigger the AV/EDR or won’t be found by the injection scanner?

The answer was pretty simple: Stomp a single function! At the time I thought it is a matter of

hours to make this work, but I know now that it took me a little while to solve all the

problems.

How does a simple injection look like

The general purpose of any injection is to evade anti-viruses and EDRs and be able to deliver

or execute malware.

For all of the injection methods, you need to open a process with PROCESS_ALL_ACCESS

permission (or a combination of permissions that allow you to spawn a thread, write and

read the process’ memory).

since the injector needs to perform high-privilege operations such as writing to the memory

of the process and executing the shellcode remotely. To be able to get

PROCESS_ALL_ACCESS you either need that the injected process will run under your user’s

context or need to have a high-privileged user running in a high-privileged context (you can

read more about UAC and what is a low privileged and high-privileged admin in MSDN) or

the injected process is a process that you spawned under your process and therefore have all

access.

https://idov31.github.io/2022/01/28/function-stomping.html
https://github.com/Idov31/FunctionStomping
https://github.com/Idov31/FunctionStomping/fork
https://github.com/Idov31
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works

2/6

After we obtain a valid handle with the right permissions we need to allocate space to the

shellcode within the remote process virtual memory with VirtualAllocEx.
That gives us the

space and the address we need for the shellcode to be written. After we have a page with the

right permissions and enough space, we can use WriteProcessMemory to write the shellcode

into the remote process.

Now, all that’s left to do is to call CreateRemoteThread with the shellcode’s address (that we

got from the VirtualAllocEx) to spawn our shellcode in the other process.

To summarize:

Research - How and why FunctionStomping works?

For the sake of the POC, I chose to target User32.dll and MessageBoxW. But, unlike the

regular way of using GetModuleHandle, I needed to do it remotely. For that, I used the

EnumProcessModules
function:

It looks like a very straightforward function and now all I needed to do is to use the good old

GetProcAddress. The implementation was pretty simple: Use GetModuleFileName to get the

module’s name out of the handle
and then if it is the module we seek (currently User32.dll).

If it is, just use GetProcAddress and get the function’s base address.

3/6

// Getting the module name.

if (GetModuleFileNameEx(procHandle,
currentModule, currentModuleName,
MAX_PATH - sizeof(wchar_t)) == 0) {

 std::cerr << "[-] Failed to get
module name: " << GetLastError() <<
std::endl;

 continue;

}

// Checking if it is the module we seek.

if (StrStrI(currentModuleName,
moduleName) != NULL) {

 functionBase =
(BYTE*)GetProcAddress(currentModule,
functionName);

 break;

}

But it didn’t work. I sat by the computer for a while, staring at the valid module handle I got

and couldn’t figure out why I could not get the function pointer. At this point, I went back to

MSDN and read again the description, and one thing caught my eye:

Well… That explains some things. I searched more about this permission and found this

explanation:

That was very helpful to me because at this moment I knew why even when I have a valid

handle, I cannot use GetProcAddress! I decided to change User32.dll and MessageBoxW to

other modules and functions: Kernel32.dll and CreateFileW.

If you are wondering why Kernel32.dll and not another DLL, the reason is that Kernel32.dll

is always loaded with any file (you can read more about it in the great Windows Internals

books) and therefore a reliable target.

And now all that’s left is to write the POC.

POC Development - Final stages

4/6

The final step is similar to any other injection method but with one significant change: We

need to use VirtualProtectEx with the base address of our function. Usually, in injections, we

give set the address parameter to NULL and get back the address that is mapped for us, but

since we want to overwrite an existing function we need to give the base address.
After

WriteProcessMemory is executed, the function is successfully stomped!

// Changing the protection to PAGE_READWRITE for the shellcode.

if (!VirtualProtectEx(procHandle, functionBase, sizeToWrite, PAGE_READWRITE,
&oldPermissions)) {

 std::cerr << "[-] Failed to change protection: " << GetLastError() << std::endl;

 CloseHandle(procHandle);

 return -1;

}

SIZE_T written;

// Writing the shellcode to the remote address.

if (!WriteProcessMemory(procHandle, functionBase, shellcode, sizeof(shellcode),
&written)) {

 std::cerr << "[-] Failed to overwrite function: " << GetLastError() << std::endl;

 VirtualProtectEx(procHandle, functionBase, sizeToWrite, oldPermissions,
&oldPermissions);

 CloseHandle(procHandle);

 return -1;

}

At first, I used PAGE_EXECUTE_READWRITE permission to execute the shellcode but it is

problematic (Although even with the PAGE_EXECUTE_READWRITE flag anti-viruses and

hollows-hunter still failed to detect it - I wanted to use something else).

Because of that, I checked if there is any other permission that can help with what I wanted:

To be able to execute the shellcode and still be undetected. You may ask yourself: “Why not

just use PAGE_EXECUTE_READ?”

I wanted to create a single POC and be able to execute any kind of shellcode: Whether it

writes to itself or not, and I’m proud to say that I found a solution for that.

I researched further about the available page permissions and one caught my eye:

PAGE_EXECUTE_WRITECOPY.

It looks like it gives read, write and execute permissions without actually using

PAGE_EXECUTE_READWRITE. I wanted to dig a little deeper into this and found an article

by CyberArk that explains more about this permission and it looked like the fitting solution.

To conclude, the UML of this method looks like that:

5/6

Detection

Because many antiviruses failed to identify this shellcode injection technique as malicious I

added a YARA signature I wrote so you can import that to your defense tools.

6/6

Acknowledgments

ModuleStomping for inspiration for this POC.

CyberArk’s article for validation of further information about WCX permission.

https://github.com/countercept/ModuleStomping
https://www.cyberark.com/resources/threat-research-blog/masking-malicious-memory-artifacts-part-iii-bypassing-defensive-scanners

