Red Teaming's Dojo

Playing around COM objects - PART 1

Component Object Model

Introduction

COM is a platform-independent, distributed, object-oriented system for creating binary software
components that can interact. COM is the foundation technology for Microsoft's OLE (Object Linking and
Embedding)(compound documents) and ActiveX (Internet-enabled components) technologies.

In other word, COM was originally created to enable Microsoft Office applications to communicate and
exchange data between documents such embedding an Excel chart inside a Word document or PowerPoint
presentation <---This ability called OLE.

In the Beginning was OLE

[Embedded.docx - Word =R =
File Window
Insert Page Layout Formulas Data Review View Add-ins LOAD TEST Team Q Tell me what you want to do 5 Share
Y el e i} n = | B= o -
™ x Calibri MUV S E— | L =3 General T !]?l |_ 7 | o % Lok E "%Y p
e e o e g (o D 7 T S
aste B I U-~|[iE+ - === sE H. @9 s 4 o Conditional Formatas Cel i ort 8 Finy
-~ L " Formatting~ Table~ Styles~ [EIFormat & o soject~
Clipboard Font [Alignment) Number) Styles Cells Editing ~
Al b Fe This is Excel v
This is Word!
A B C D E IF G =
1 |This is Excel |
=
2
3
4
5 <
6
? 4
B .
9
10 v
Sheet1 ® [l »
Page1of1 3werds [[2 Engiish (United Kingdom) 83 B B = - N + 12

OLE ability this figure was taken from the talk of James Forshaw "COM in 60 seconds"

COM objects can be created with a variety of programming languages. Object-oriented languages, such as
C++ and the challenge for me was how I could interact with COM objects using GOLANG via Win32
API functions devoted for this. ==

As well as COM designed to promote software interoperability; that is, to allow two or more applications
or “components” to easily interact with one another, even if they were written by different vendors at different

times, in different programming languages, or if they are running on different machines and different
operating systems.

Interoperability Heaven

Component Consumer

COM objects and Interfaces

First of all, what is an object? An object is an instantiation of some class. At a generic level, a “class” is the
definition of a set of related attributes and methods grouped together for a specified purpose. The purpose
is generally to provide some service to “things” outside the object, namely clients that want to make use of
those services.

A client never has direct access to the COM object in its entirety. Instead, clients always access the
object through clearly defined contracts: the interfaces that the object supports.

A COM object exposes its features through an interface, which is a collection of member functions.

An interface is basically an abstract class, containing only pure virtual functions and has no data
members.

Therefore, an abstract class is a class that contain only pure virtual declaration of functions (the " =0
"indicates the purity)) and has no data members:

class IClassA
{
public:
virtual void funcl() = 0;

a b W N B

33

An abstract class is a class that cannot be used to create objects; however, it can be subclassed.

So, the following line of code is not valid and it will throw an error as an object cannot be created for the

abstract class:

1 IClassA* pNewInstance = new IClassA;

The interface class can only be approached by using a pointer to the virtual table that exposes the
methods in the interface. Interface does not come by itself, it usually comes with an inherited class that
implements the exposed method in the interface. Such a class that implements the interface exposed
methods is often called a co-class(derived class). Here is an example of a co-class:

1 class ClassB: public IClassA
{
public:
virtual void funcl() { // implementation here }

a h W N

}s

Code Explanation: Here, IClassA is the base class, and as it has a pure virtual function (funcl), it has
become an abstract class. ClassB is derived from the parent class IClassA. The funcl is defined in the
derived class.

We can use a global method to create an instance of the co-class or we can use a static method as well.
The technique of using a method that creates an instance of a co-class and returning a pointer to its
interface is often called Class Factoring. Here is the global create instance method:

1 IClassAx CreateInstance()
2 {
3 return new ClassB;

4}

In the main function, we try to create a pointer of base class type, it will be created successfully, and we can
point it to the derived class. This pointer can be used to call the derived class function.

1 1int main() {

2 //IClassA b; —————————- > this line will throw an error

3 IClassAx b = CreateInstance(); //-————————~ > pointer can be created, so this line 1is corr
4 b -> funcl();

5 J

A COM class is identified by using a unique 128-bit Class ID (CLSID) that associates a class with a
particular deployment in the file system, which for Windows is a DLL or EXE. A CLSID is a GUID, which
means that no other class has the same CLSID.(Strongly-typed)

Also we can use a programmatic identifier (ProglD) which is a registry entry that can be associated with
a CLSID. Like the CLSID, the ProgID identifies a class but with less precision because itis not guaranteed
to be globally unique.(it's human readable and are locally scoped)

Interfaces are strongly typed. Every interface has its own unique interface identifier, named an IID, which
eliminates collisions that could occur with human-readable names. The IID is a globally unique identifier
(GUID). The name of an interface is always prefixed with an "I' by convention.

@ COM Clients only interact with pointers to interfaces as we described before: When a client
has access to an object, it has nothing more than a pointer through which it can access the
functions in the interface. The pointer is opague, meaning that it hides all aspects of internal
implementation. In COM, the client can only call functions of the interface to which it has a pointer.

Object Presentation

Itis convenient to use a simple presentation to show the relation between a COM object and its interfaces :

Interfaces . COM Object

Typical picture of a COM object that supports 3 interfaces A,B, and C

Now, when a client want to interact with this COM object he must use a pointer to the targeted interface:

COM Client

Interface

Pointer

Interface B extend towards the client connected to it

In order to enumerate COM objects through a number of different views (e.g. by CLSID, by ProgID, by server
executable), enumerate interfaces on the object and then create an instance and invoke methods we will
use the famous tool OleViewDotNet made by James Forshaw and the tool COMView.

Let's try to analyze this CLSID that have the following GUID :

13709620-C279-11CE-A49E-444553540000,

l]& OleView .NET v1.11 - 64bit

File Reqistry Object Security Processes Storage Help
| “crsine

https://github.com/tyranid/oleviewdotnet
https://twitter.com/tiraniddo
https://www.japheth.de/COMView.html

Dentatd

Filter: |13?UQBZD—C2?9—11CE—A49E-4—4—45535-4EJDDD|

EI--%FLE?E}Qﬁza—CQ?Q—11ce—a499—444553549889 - 5hell Automation Service

-0 I01spatch

-#+0 I0bjectSaftety
-+g I0bjectWithsite
-+ IShellDispatch
-+ IShellDispatch2
--+0 IShellDispatch3
=0 IShellDispatchd
-+ IShellDispatchs
I#tl IUnknown i

[£l--. Factory Interfaces
r«»cl IClassFactory l
i TUnknown

13709620-C279-11CE-A49E-444553540000

GUID of CLSID

In COM, an object can support multiple interfaces as depicted on the above picture: IDispatch, IObjectSafety,
IObjectSafety, IShellDispatch{1,2,3,4,5} and there are 2 interfaces that should demands a little special
attention : lUnknown & IClassFactory.

As we said previously an interface is strongly-typed which mean it has an only unique identifier called IID:

"& OleView NET v1.11 - 64bit

File Registry Object Security Processes Storage Help

CLSIDs /" 13709620-c279-11ce-a...

CLSID Supported Interfaces Type Library

Refresh / D which is the GUID of the interface
Name no Methods WTable Offset
IObjectSafety BoBDCET1-93CT-1T1CF-8F2 S05F 64 3 shell32_dII+0x599760
IObjectWithSite FC4801A3-2BA9-11CF-A229-00AA003D 7352 5 shell32_dI+0x599720
IShellDispatch D8F015C0-C278-11CE-A49E-444553540000 3 shell32 dIl+0x599788
IShellDispatch2 A4CER92C-3BA9-11D2-9DEA-O0CO4FB16162 3 shell32 dI+0x599788
IShellDispatch3 177160CA-BB5A-411C-841D-BD3SFACDEAAD 3 shell32 dIl+0x599788
IShellDispatch4 EFD84B2D-4BCF-4298-BE25-EBS42A59FBDA 3 shell32_dI+0x599788
IShellDispatch5 B866738B9-6CF2-4DE8-8767-F794EBET4F4E 3 shell32_dII+0x599788
IUnknown 00000000-0000-0000-C0O00-000000000046 3 shell32 dil+0x599788
<

[Faciory Interfaces]

Name o Methods VTable Offset
IClassFactory 00000001-0000-0000-C000-000000000046 3 shell32_dI+0x5AD2CE
IUnknown 00000000-0000-0000-CO00-000000000046 3 shell32_dI+0x5AD2CE

Supported interfaces on the CoClass CLSID 13709620-C279-11CE-A49E-444553540000

1) lUnknown interface

IUnkown is a fundamental interface in COM that contains basic operations of not only all objects, but all
interfaces as well. An objectis not considered a COM object unless it implements this interface.

All interfaces in COM are polymorphic with IlUknown:

C Unknwnh X

C: ? Program Files (x86) » Windows Kits » 10 ? Include > 10.0.22000.0 > um > C Unknwnh > ...

187 ff
108 S/ IID IUnknown and all other system IIDs are provided in UUID.LIB
189 S/ Link that library in with your proxies, clients and servers

110 iy, FIEEE LT FFEiifidifiifiriiisy (FEriiiss fiy

111

112 #if (_MSC VER »= 1188) && defined(_ cplusplus) && !defined(CINTERFACE)
113 EXTERN_C const IID IID IUnknown;

114 extern "C4++"

115 i

116 MIDL_INTERFACE("202000800-0000-0000-C000-000000000046")

117 IUnknown

118 {

119 public:

1209 BEGIN_ INTERFACE

121 virtual HRESULT STDMETHODCALLTYPE Querylntertace(

122 /* [in] */ REFIID riid,

123 J* [iid is][out] */ _COM Outptr_woid _ RPC FAR * RPC_FAR *ppvObject) = 8;
124 |

125 virtual ULONG STDMETHODCALLTYPE AddRef(wvoid) = 8;

126

127 virtual ULONG STDMETHODCALLTYPE Release(void) = @;
128

129 template<class Q>

130 HRESULT

131 #ifdef _M CEE_PURE

132 | | | _clrcall

133 #else

134 | | | STDMETHODCALLTYPE

135 #endif

136 QueryInterface(COM Outptr_ Q** pp)

137 1

138 | return QueryInterface{ uuidof(Q), (void **)pp);
139 b

140

141 END_INTERFACE

142 | ® 1

0 ou look at the 0 a erfaces yo ee Que erface, AddRef, and Release

IShellDispatchS {B667366 3-6CF 2-4DE 6-8767-F794EBE74F4E} DISPATCH (4] Hidden, Dual, Dispatchable

d:Ptr GUID, ppvObyPe

Void
ui4

inProcerver C-Wind WOWBd | BrowseForFolder 0460.. dispatch, func, stdcall PliFol. Hwndl4, Thie:Bstr, Option.. 0 :
2 P Rootz\ sl | Windows 0x60.. dispatch, func. stdcall Dispat 0 ‘
23 TBEBFAFA mmunTyTranspoit InProcServer32 C:\Windows\Sysw/OwB4tin | Open 0460, dispatch, func, stdcall Void vDirVarisnt 0 :
(138478 091204708 6767 7Fc3aaaaosra) Windons Secuily. Web Provider. 32 C:\Windows\SyswiwBd\W | Explore 0x60... dispatch, func, stdcall Void vDirVariant 0 !
{138508bc-1 60349 3cBfeade1d05d65d) @C: \F‘rnglamFlles[xHE]\M\cmsnYl[Iﬂuce\mnt\tlﬂme]E\MAFIEHELLDLL InF‘maSewelBZ C:\Program Fils (486)Miciq | MinimizeAl 0460 dispatch, func, stdcal Vaid 0 -
{13adbbe8-6527-40cb-a396-1602829541ef} Fi ion Object \System3ie || L GeE0dnatch o sl soid] £
{13443650.8B6F 11D 0-AFB3-00AA00BEZA.. DV Video Encoder IanocSewel}Z E\W\ndows\SysWUWEﬂq u L2
(13837425468 47BF -BBCA-BACSPFIERD... CMpeg2DataConirol rocServer: [OWB4M Functions | Variables | Interfaces
{13D3C4B8-B179-4ebb-BFE2-F704173E7448) CLSID_CortactReadingPane IancSewel}Z /EnmmnnPlngramF\las/\Sy
{13D557B6-4469-4362-BEAF-52BFDOF180... Microsoft Forms 2.0 HTML TextAREA InProcServer32 C:\Program Files (x86\Micio Close
{13DE4442-8D21-4C8E-BFIC-8FEICBOBEF... E-lnk InProcServer32 ZCommonProgramFilesz\Mi¢ -
{13EE36D8-2EFD-44F6.AF38-75FFISEGCE... Thiottle setings for BAM InProcSer %SystemPoot, 2\ restiicted

The re-usage of the 3 functions of IUnknown interface in IShellDispatch5 interface due to polymorphic concept.

In other words, IlUnknown is the base interface from which all other interfaces inherit.

Before continuing, | would like to highlight something we've discussed it before which is this expression
"COM Client only interact with a pointer to interfaces", this pointer is a pointer to an array of pointers to
the objects's implementations of the interface member functions:

Interface Function Table

Interface Pointer ——» pgointer ———*

Pointer to Functionl
Object

Pointer to Function2 Implementation of

Pointer to Function3 interface functions

A client has a pointer to an interface which is a pointer to a pointer to an array (table) of pointers to the object's implementation.

By convention the pointer to the interface function table is called the pVtbl pointer. The table itself is
generally referred to with the name vtbl for “virtual function table.”

Interface Function Table

Interface Pointer ——» IpVtbl — ™ pointer to Function1

Object
Pointer to Function2

Implementation of

Pointer to Function3 interface functions

Convention places object data following the pointer to the interface function table.

2) IClassFactory interface

As you know, we create instances of a COM object using:

e The interface specifications.

e The CLSID declaration in the COM class.

We do not directly use the COM class to create an instance of a type of COM object.

Instead, an intermediate object called a class object is used to create instances of a COM object.

Class Object

A class objectis a specialized type of COM object that knows how to create a specific type of COM object.

There is a one-to-one relationship between a class object and a COM object.

Every type of class object knows how to create only one type of COM object. For example, if two COM
objects, called O1 and 02, are implemented within a COM server, two class objects must also be
implemented, one that knows how to create 01 and one that knows how to create 02.

A class object can be considered of as a "creator' object. Its only goal is to create instances of a COM
object.

Clients obtain a pointer to a class object's interface by asking the COM subsystem for a specific class object
that can create the COM object they want. Using this interface pointer, clients have the class object create
one or more instances of their associated COM object.

The COM specification defines a COM object creation interface called IClassFactory:

IClassFactory : public IUnknown

1
public:

virtual /#* [] 1] */ HRESULT STDMETHODCALLTYPE |CreatelInstance(

ELl on][unique][in]

_In_opt_ IUnknown *pUnkOuter,

:.:':r'ur'l:j = on | _'_"|:
In REFTID ri
' :-:'u'lr'l:?_.-';.—_'_:::r,: [id

_COM_Outptr_

virtual /* [local] */ HRESULT STDMETHODCALLTYPE LockServer(
'# [in] */ BOOL flLock) = 8;

Class objects that implement IClassFactory as their object creation interface are called class
factories.

Given a CLSID the client must now create an object of that class in order to make use of its services. It does
S0 using two steps:

1. Obtain the “class factory” for the CLSID.
2. Ask the class factory to instantiate an object of the class

3. Returning an interface pointer to the client.

(1) “Create
an Object”

(3) Return new
interface pointer

(2) Manufacture
Object

A client asks a class factory in the server to create an object

@ The IClassFactory interface is implemented by COM servers on a “class factory” object for the
purpose of creating new objects of a particular class.

0OI32.dII!CoGetClassObject
Now that we grasp what a class factory we can examine how a client obtains the class factory.

This COM library function do whatever is necessary to obtain a class factory object for the given CLSID and
return one of that class factory's interface pointers to the client. After that the client may calls
IClassFactory::Createlnstance to instantiate objects of the class.

1 HRESULT CoGetClassObject(

2 [in] REFCLSID rclsid,

3 [in] DWORD dwClsContext,
4 [in, optional] LPVOID pvReserved,

5 [in] REFIID riid,

6 [out] LPVOID *ppv

75

Let's spot the most important parameters :
[in] rclsid

The CLSID associated with the data and code that you will use to create the objects.
[in] dwClsContext

The context in which the executable code is to be run. To enable a remote activation, include
CLSCTX_REMOTE_SERVER. For more information on the context values and their use, see the CLSCTX
enumeration.

[in] ridd

Reference to the identifier of the interface, which will be supplied in ppv on successful return. This
interface will be used to communicate with the class object. Typically this value is IID_IClassFactory,
although other values such as IID_IClassFactory2 which supports a form of licensing are allowed.

[out] ppv

The address of pointer variable that receives the interface pointer requested in riid. Upon successful
return, *ppv contains the requested interface pointer.

https://docs.microsoft.com/en-us/windows/desktop/api/wtypesbase/ne-wtypesbase-clsctx

This function return S_OK if location and connection to the specified class object was successful.

Now, we will try to instantiate an object of the class {13709620-C279-11CE-A49E-444553540000} using
OleViewDotNet which seems for me very abstract :

B OleView NET v1.11 - 64bit - m] X Properties:
File Registry Object Security Processes Storage Help CLSID 13709620-C279-11CE-A49E-444553540000
Name Shell Automation Service
~ 13709620-¢279-11¢ce-a... v X {? Server C:\Windous\system32\shel132.d11
CLSID Supported Interfaces Type Library ks INTERFACESAFE_FOR_UNTRUSTED_CALLER
Name: [sheil Automation Service 2 INTERFACESAFE_FOR_UNTRUSTED_DATA
cLSID: [13709620-C279-11CE-A49E-444553540000 | create =
E
Server Type: InProcServer32 %
Server: C:\Windows\system32\shell32.dlI
CmdLine: N/A
Treatas: [na Properties jnterfaces
Hame 1ID Vieuer
Threading Model: |Apanment IDispatch 000204 2088-C Mo

ProglDs:
Shell Application
Shell. Applicatio...

I0bjectSafety CB5BDCB1-93C1-11CF-8F20-00305F2CD864 Mo
I0bjecthWithSite FC4801A3-2BA0-11CF-A229-88AAG03D7352 MNo
IShellDispatch D8F@15C8-C278-11CE-A49E-444553540000 Yes
IshellDispatch2 A4C6892C-3BAG-11D2-9DEA-8BCO4FB16162 Yes
IshellDispatch3 177168CA-BBSA-411C-841D-BD3SFACDEAAR Yes
IShellDispatch4 EFD84B2D-4BCF-4208-BE25-EBS42AS9FBDA Yes
IShellDispatchS 866738B9-6CF2-4DES-8767-F794EBETAFAE Yes
TIunknowin 6600-0000-Cooe 46 Mo

Categories:

Operations -

Hooking class factoring

In order to understand what's under the hood | decided to hook class factoring routine and practice what
Mr.Un1k0d3r teach us, so let's take a more insightful look through WinDBG at how the calls are chained
together. If we ask OLE32 about all the CoGet* and Createl* used by OleViewDotNet :

0:008> x OLE32!CoGetx

00007ffb 2ffd4790 ole32!CoGetInterceptor (struct _GUID *, struct IUnknown *, struct _GUID
00007ffb 2ff8e180 ole32!CoGetObject (wchar_t *, struct tagBIND_OPTS x, struct _GUID *, voii
00007ffb 2ffc3830 ole32!CoGetSystemWow64DirectoryW (wchar_t x, unsigned int)

00007ffb 2ffa3350 ole32!CoGetInterceptorFromTypeInfo (struct _GUID *, struct IUnknown *x, s
00007ffb 2ff91070 ole32!CoGetInterceptorFor0le32 (struct _GUID *, struct IUnknown *, struc
0:008> x OLE32!Createlx*

00007ffb 2ffc38e0 ole32!CreatellLockBytesOnHGlobalStub (void x, int, struct ILockBytes xx)
00007ffb 2ff84c30 ole32!CreateltemMoniker (wchar_t %, wchar_t *, struct IMoniker xx)

As you can notice above OleViewDotNet don't use OI32.dIlI'CoGetClassObject, and you may encounter
CoCreatelnstance which is simply a wrapper function for CoGetClassObject and IClassFactory.

By googling little a bit | found this precious information mentioned on MSDN documentation that said:

@ You should not call DIIGetClassObject directly. When an object is defined in a DLL,
CoGetClassObject calls the CoLoadLibrary function to load the DLL(in our cae this dll is
shell32.dll), which, in turn, calls DIIGetClassObject.

https://twitter.com/MrUn1k0d3r
https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-dllgetclassobject
https://docs.microsoft.com/en-us/windows/desktop/api/combaseapi/nf-combaseapi-cogetclassobject
https://docs.microsoft.com/en-us/windows/desktop/api/objbase/nf-objbase-coloadlibrary

We can also verify the existence of this function through WinDBG :

1 0:000> x
2 00007ffb 3011e3f0 shell32!D11GetClassObject (void)

So we place a breakpoint at SHELL32!DIIGetClassObject and let it run until we hit it:

1 0:000> bp SHELL32!D11GetClassObject
2 0:000> g

3 Breakpoint 0 hit

4 shell32!DllGetClassObject:

5

N
00007ffb 3011e3f0 4053 push rbx
B8 pID: 8476 - WinDbg 12111.9001.0
m Home View Breakpoints Time Travel Model Scripting Source Memory Command
’ {P stepout 1) Step Out Back D Restart | | onoi|
II = - = [| ool
Step Int Step Into Back Stop Debuggil
Break Go)= () S5 o Go op Debugging Settings Source Assembly Local Feedback
- ﬁ‘ Step Over *{) Step OverBack pack & Detach Help~ Hub “ﬂ OleView NET v1.11 - 64bit — O X
Flow Control Reverse Flow Control End Preferences Help File Registry Object Security Processes Storage Help
13709620-c279-11ce-a... | - x (g
©:000> bp SHELL32IDllGetClassobject CLSID | Supported Interfaces Type Library S
0:000> g e ol Narme: [Shell Service il
Breakpoint @ hit - o
shell22!pllGetClassObject: CLSID: [13709620 C275 11CE A4GE 444553540000 = Creae El
- o
©000e7ffb 3011e3f0 4053 push rbx Server Type: InProcServerdz E
Server. C:Windows\system32\shell32.dll
CmdLine: N/A
TreatAs: [Na Properties

Threading Model: [Apartment |
ProgiDs:

Shell Application
Shell Applicatio...

Categories

We can so confirm that OleViewDotNet is using SHELL32IDIlIGetClassObject for instantiating an object of
the class with CLSID : {13709620-C279-11CE-A49E-444553540000}

To gain a full picture of what's under the hood, we can use the nice (Trace and watch utility)'wt -12° WinDBG
command to gain a two-level-depth hierarchical function call :

1 0:007> bp SHELL32!D11GetClassObject

2 0:007> g

3 Breakpoint 0 hit

4 shell32!Dl1lGetClassObject:

5 00007ffb 3011e3f0 4053 push rbx

6 0:000> wt -1 2

7 Tracing shell32!D11GetClassObject to return address 00007ffb 30df50ch
8
9

491 0 [0] shell32!DllGetClassObject
6 0 [1] shell32!_security_check_cookie

10 498 6 [0] shell32!DllGetClassObject
11
12 504 instructions were executed in 503 events (0 from other threads)
13
14 Function Name Invocations MinInst MaxInst AvgInst
15 shell32!D11GetClassObject 1 498 498 498
16 shell32!_security_check_cookie 1 6 6 6

e 0 system calls were executed

19
20 combase!CClassCache: :CD1L1PathEntry: :GetClassObject+0x29 [inlined in combase!CClassCache::C
21 00007ffb 30df50ch f605a2e182a0002 test byte ptr [combase!Microsoft_Windows_COM_PerfEnab’
22

From the above result | deduced that SHELL32!DIlIGetClassObject is calling combase!DIIGetClassObject
thus | added an other breakpoint to confirm that result :

1 0:009> bl

2 O e Disable Clear 00007ffb 3011e3f0 0001 (0001) O:*xxx shell32!Dl1GetClassObjec
3 1 e Disable Clear 00007ffb 30elff90 0001 (0001) O:*xxx combase!Dl1GetClassObjec
4 0:009> g

5 Breakpoint 0 hit
6 shell32!Dl1lGetClassObject:

7 00007ffb 3011e3f0 4053 push rbx

8 0:000> g

9 Breakpoint 1 hit

10 combase!Dl1lGetClassObject:

11 00007ffb" 30elffo90 48895c2408 mov gword ptr [rsp+8],rbx ss:000000cf’9a6fc730=fffff

Now | have a clear idea how | will craft my hooker &

Below is a simplified diagram that aims to visualize the flow of events before and after
SHELL32!DliIGetClassObject is hooked :

OleViewDotNet
is instantiating an object of the class.

COMBASE!DIIGetClassObject

—eee- jmp SHELL32!DIIGetClassObject — Legitimate code

A

jmp COMBASE!DIIGetClassObject

Unhooked B e pp—— “

- en G R S M G o m em em e e S G G MR BN R MR SR MR M R G S o e o o s

[
Hooked Y

HookedDIllGetClassObject

----- Malicious Code

N jmp combase!DIIGetClassObject

Before hooking

Based on my debugging analysis when OleViewDotNet want to instantiate an object of the class mainly it
jumps to SHELL32!DIlIGetClassObject then executing an other jump to combase!DIlIGetClassObject :

. NinDbg 1.2111.9001.0 (Administratol - O X
Home View Brea... Tim... Model Seri... Sou... Me.. Com... A | Properties:

II {'}* Step Cut ('} Step Out Back J Restart | P ongl|

. -| ool

Step Int Step Into Back M Stop Deb
Break Go (uEeme (H)SEpim = Go LRI Settings Source |Assembly Local Feedback
« {}' StepOver ¥} Step OverBack Back & Detach Help~ Hub
Flow Control Reverse Flow Control End Preferences Help
:
0:008> g
rbx

0:000> g

Shell Automation Service

13769628-C279-11CE -A49E -444553548008

Breakpoint @ hit
shell321D11GetClassObject:| 1 call
00087 1897490 4653 l push

Breakpoint 1 hit

[combaseIp1icetclassobject: |2 call

0:000> g

0eee7 T ladcffoe 48895c2408 mov

qword ptr [rsp+8],rbx ss:000000f9 ed30cabe=0401cde100ee3.

INTERFACESAFE_FOR_UNTRUSTED_CALLER
INTERFACESAFE_FOR_UNTRUSTED_DATA

Shell Automation Service
C:\Windouws\system32\shell32.d11

Objet of the class successfully is instantiate

Interfaces:

Name
IDispatch
Iobjectsafety

CB5BDC81-93C1-11CF-8F26-80885F 200064
IObjectWithSite FCA8@1A3-2BA9-11CF-A229-8BAABB3D7352
IshellDispatch D8F@15C@-C278-11CE-A4SE-444553540000
IShellDispatch2 A4C6892C-3BA9-11D2-9DEA-BBCEAFB16162
IShellDispatch3 17716@CA-BBSA-411C-841D-BD38FACDEAA®
IShellDispatch4 EFD84B2D-4BCF-4208-BE25-EB542A59FBDA
IshellDispatchS 866738B9-6CF2-4DES-8767-F794EBETAFAE
Tunknoun

Viewer
No

Ho

o

ves
Yes
Yes
Yes
Yes

o

Before moving to after hooking section let me show you the DIIGetClassObject definition based on MSDN
documentation :

1
2

3
4
5

HRESULT Dl1lGetClassObject(
[in] REFCLSID rclsid,//The CLSID that will associate the correct data and code.
riid, //Usually, this is IID_IClassFactory, a reference to the -identifier

*ppv //The address of a pointer variable that receives the 1interface poin

[in] REFIID
[out] LPVOID
)8

If you have already noticed that CoGetClassObject parameters look like DIIGetClassObject.

After hooking

1. OleViewDotNet calls shell32!DlIGetClassObiject like before hooking.

2. OleViewDotNet looks up shell32IDIIGetClassObject address but here is the magic, we patched

dynamically this address to a malicious address that point on a rogue

comhook!HookedDIIGetClassObject function:

0:004> g
Breakpoint 0 hit
shell32!Dl1GetCla
000O7fff 1897490
0:000> u 0EE7fff

ssObject:

b8fal38469 mov eax,offset comhook!HookedD11lGetClassObject (0000

©1897e€490

shell32!D1l1GetClassObject:

00007fff 1897490
00007fff 1897495
00007fff" 1897497
00007fff 1897498
00007fff 1897e49a
00007fff 1897e4al
00007fff 1897e4a8
00007fff 1897edab

b8fal38469 mov eax,offset comhook!HookedD11lGetClassObject (0000
ffeo jmp rax

56 push rsi

4157 push ris

4881ecb0020000 sub rsp,2Boh

488b05d06f6600 mov rax,qword ptr [shell32!_security_cookie (00007ff
4833c4 xor rax,rsp

4889842490020000 mov qword ptr [rsp+290h],rax

https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cogetclassobject
https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-dllgetclassobject

Take a look on line 7 and 8, the address of HookedDIIGetClassObject is 0x698413fa, and if we
disassemble it we will land into our malicious code and for poc purpose,
comhook!HookedDIIGetClassObject intercepts the rclsid parameter and execute pop up message
holding the CLSID of the COM class :

O© 00 N o O A W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

0:000> uf 0OOEOOOO 698413fa
comhook ! HookedD11GetClassObject:

00000000° 698413 fa
00000000 698413 fb
00000000 698413 fe
00000000 69841402
00000000 " 69841406
00000000 6984140a
00000000 " 6984140e
00000000 69841413
00000000 69841418
00000000 6984141f
00000000 69841421
00000000 69841425
00000000 " 69841429
00000000 6984142c
00000000 " 69841430
00000000 " 69841437
00000000 " 69841439
00000000 " 6984143d
00000000 " 69841441
00000000 " 69841444
00000000 " 6984144b
00000000 69841450
00000000 69841453
00000000 69841458
00000000 " 6984145c
00000000 " 69841462
00000000 69841469
00000000 " 6984146¢C
00000000 69841471
00000000° 69841478
00000000° 6984147a
00000000 69841481
00000000 69841484
00000000 " 69841488
00000000 " 6984148c
00000000 6984148f
00000000 69841493
00000000 69841495
00000000 " 69841498
00000000 " 6984149b
00000000 " 6984149f
00000000 " 69841420

prmn mmm s

55

4889e5
4883ec40
48894d10
48895518
4c894520
ba00010000
b940000000
488b05057e0000
ffdo

4889458
488d45e8
4889c2
488b4d10
488b05fd7e0000
ffdo

488b55e8
488b45f8
4989d1
4c8d05b52b0OOO
baff000000
4889c1
e858ffffff
488b45f8
41b901000000
4c8d05c62b0OOO
4889c2
b900000000
488b05cc7e0000
ffdo
488d0597640000
488b00O
488b4d20
488b5518
4989c8
488b4d10

ffdo

8945f4 uf
8b45f4
4883c440

5d

c3

push
mov
sub
mov
mov
mov
mov
mov
mov
call
mov
lea
mov
mov
mov
call
mov
mov
mov
lea
mov
mov
call
mov
mov
lea
mov
mov
mov
call
lea
mov
mov
mov
mov
mov
call
mov
mov
add
pop
ret

rbp
rbp,rsp
rsp,40h
qword ptr [rbp+10h],rcx
[rbp+18h], rdx

[rbp+20h],r8

qword ptr
gword ptr
edx,100h
ecx,40h
rax,qword ptr [comhook!rdgco+0x190c (00000000 69
rax

qword ptr [rbp-8],rax

rax, [rbp-18h]
rdx,rax
rcx,qword ptr [rbp+10h]
rax,qword ptr [comhook!rdgco+Oxlalc (0000000 69
rax

rdx,qword ptr [rbp-18h]
rax,qword ptr [rbp-8]

r9, rdx

r8, [comhook!Hook+0x2b5f (0000000 69844000)]
edx,0FFh

rcx, rax

comhook+0x13b0 (00000000 698413b0)

rax,qword ptr [rbp-8]

rod,1

r8, [comhook !Hook+0x2b8e (0000000 6984402f)]
rdx,rax

ecx,0

rax,qword ptr [comhook!rdgco+0xla2c (0000000 69
rax

rax, [comhook!rdgco (00000000 69847918)]
rax,qword ptr [rax]
[rbp+206h]

[rbp+18h]

rcx,qword ptr
rdx,qword ptr
r8,rcx
rcx,qword ptr [rbp+10h]
rax

dword ptr [rbp-0Ch],eax
eax,dword ptr [rbp-0Ch]
rsp,40h

rbp

U OleView NET v1.11 - 64bit - O >
File Registry Object Security Processes Storage Help

sanladold 19800 fip

Registry Properties | 'CLSIDs | CLSIDs }13709620-c279-11ce-a... - X
CLSID Supported Interfaces Type Library
Name: |Shel| Automation Service |
CLSID: [13709620-C279-11CE-A49E-444553540000 || Create |
Server Type: |InPr0cServer32 Message from hooker |
Server: C:\Windows\system32\shell32_dll
CmdLine: N/A
i | HookedDIIGetClassObject Called ARGS CLSID -
Treaths. NiA {13709620-C279-11CE-A49E-444553540000} Properties
Threading Model: |Apartment
ProglDs:
Shell Application]
Shell.Applicatio. ..
Categories:
3. comhook!HookedDIIGetClassObject at the end call combase!DIIGetClassObject routine at line 39
and if we can confirm that by adding a breakpoint at the address 0x69841478:
1 0:000> g
2 Breakpoint 2 hit
3 comhook!HookedD11GetClassObject+0x99:
4 00000000 69841493 ffdo call rax {combase!DllGetClassObject (000Q7fff ladcffo

comhook.dll-x64

Frankly, I included this exercise in my research first to get familiar with known win32 API functions used to
create COM objects and also simulate what Anti-malware and EDR software often utilize to intercept
suspicious calls by injecting their dlls into processes and make some checks.

In our context, | inject comhook.dll into OleViewDotNet that allows me to understand what's under the hood
in the class factoring phase of any COM object creation.

Let me share the snippet code of my comhook.dIl and explain the most relevant part of it :

Global variables :

1 BOOL hooked = FALSE;

2 typedef BOOL (WINAPI * DLLMAIN) (HINSTANCE, DWORD, LPVOID);

3 typedef HRESULT(*RealD1lGetClassObject) (REFCLSID, REFIID, LPVOIDx*);
4 RealDllGetClassObject rdgco;

5 FARPROC shell32D11GetClassObject;

I ~

@ Thec programming language provides a keyword called typedef, which you can use to give a
type a new name.

HookedDlIIGetClassObject()

1
2
3
4
5
6
-
8
9

10
11 }

Hook()

HRESULT HookedD11GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv){

CHAR *log = (CHARx)GlobalAlloc(GPTR, 256);

HRESULT hr;

LPOLESTR os;

StringFromCLSID(rclsid, &os);

snprintf(log, 255, "HookedDllGetClassObject Called ARGS CLSID %ws\n", 0s);
MessageBox (0, log,"Message from hooker",1);

hr = rdgco(rclsid, riid, ppv);

return hr;

1 VOID Hook()

2 {
3

O 0 N o o >

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

if(!hooked) {

//Get the address of shell32!D11GetClassObject
shell32D11GetClassObject = GetProcAddress(LoadlLibrary("shell32.dll"), "DllGetClas
//Get the address of combase!Dl1lGetClassObject
rdgco = (RealDllGetClassObject)GetProcAddress(LoadLibrary("combase.dll"), "DllGet

DWORD dwSize = 7;

DWORD dwOld = 0;

//Allocates the specified number of bytes from the heap.

CHAR *patch = (CHARx)GlobalAlloc(GPTR, dwSize);

//Doing casting stuff

CHAR *addr = (CHARx)shell32D11lGetClassObject;

long long longHookedD11lGetClassObject = (long long)HookedD1llGetClassObject;

DWORD dwHooked = (DWORD) longHookedD11lGetClassObject;

//Changes the protection of shell32D1l1GetClassObject addresss to be able to patch
VirtualProtect ((VOIDx)shell32D11GetClassObject, dwSize, PAGE_EXECUTE_READWRITE, &d

//The tricky part

DWORD i = 0;

DWORD position = 1;

patch[0] = Oxb8;

for(iy; 1 < 4; i++) {
CHAR current = dwHooked;
patch[position++] = current;
dwHooked >>= 8;

}

patch[5] oxff;

patch[6] = 0xe0;

//patch the address of shell32D11GetClassObject to point into HookedDllGetClassObj:

memcpy (addr, patch, dwSize);
VirtualProtect ((VOIDx)shell32D11GetClassObject, dwSize, PAGE_EXECUTE_READ, &dwOld)

hooked = TRUE;

I will explain the tricky part, roughly the idea is to patch the address of shell32DIIGetClassObject to an
address that will allow us to jump into HookedDIIGetClassObject.

+ The local variable addr hold the address of shell32DIlIGetClassObject.

+ The local variable dwHooked hold the address of HookedDIlIGetClassObject which is 0x698413fa
which is represented in 4 bytes.

Now, we want that the patch point us in an address that perform the following instruction:

: /tmp# python OpAsm.1.3.py

Asm Tools v1.3 / Mr.Unlk(

Y OUTPUT
08 fa 13 84 69

Based on the above result our asm code is represented in 7 opcodes, thus we fix dwSize to 7 and we
allocate memory for the CHAR* variable patch by this instruction :

CHAR *patch = (CHARx)GlobalAlloc(GPTR, dwSize);

@ Keep in mind that when pushing stuff on the stack there is endianness format that should be take
on consideration while storing 0x698413fa on that stack.

The following figure explain what's happened in the tricky part

+ The size of dwHooked is 4 bytes
+ The size of a CHAR is 1 byte

DWORD dwsize =7; dwHooked = 0x698413fa
CHAR *patch = (CHAR*)GlobalAlloc(GP TR, dwSize);
patch[0] = Oxb8;

Oxb8 | Oxfa | 0x13 | 0x84| 0x69 | Oxff |Oxe0 DWORD i = 0;
DWORD position = 1;

for(i; i < 4; i++)

0 ! 2 3 4 > 6 CHAR current = (unsigned char)dwHooked:;
patch[position++] = current;
The purpose of the for loop is to printf("current %x\n",(unsigned char)current);
Here 0x698413fa should be fill patch[1] —> patch[4] with the address dwHooked >>= 8

stored in endianness format value of dwhooked in endianness format }

patch|[5] = Oxff;
First iteration : i =0 patch[6] = OxeO0;
CHAR current = 0x698413fa;

Since the size of a char is 1 byte

50 automatically eurrent will store last value : Oxfa

patch[position++] = current;

Here position ++ pass the value then increment —= patch[1] = Oxfa

dwHooked >== §;
Here we right shift 8 bits(1 byte) the value 0x698413fa

At the end of the first iteration dwhooked = 0x00698413
and after we proceed the same logic fori=1 ... i=3

Finally, we will patch the address of shell32DIIGetClassObject by the address of patch variable through
this instruction : memcpy(addr, patch, dwSize);

COM via C(nhot C++)

The purpose of this section will be the implementation of those tasks in C language:

1. Obtain the “class factory” for our targeted CLSID. --> through DIIGetClassObject.

2. Ask the class factory to instantiate an object of the class --> through Createlnstance method.
3. Get ShellExecute ID.

4. Initialize parameters to be used on Invoke method.

5. Pop the calc.

Wt 3) Inveke ShellExecute method by setting file parameter to calc
Fi R stn Ob S i Processes Stora Help —
e Registry Object Security ocesses Storage Help Invoke standard -
- - . . T x
Registry Properties |/ CLSIDs } Shell Service (& Name SheliDispatcha
Properties: 2 | Methods:
CLSTD 13789620-C279- 11CE-A49E 444553548000 | | (2 |[Name Return Params A~
Hame shell Automation service 3 || servicestart System Object [in] String ServiceName, [in] Object Persi
Server C:\Windows\system32\shel132.d11 |2 || ServiceStop System Object [in] String ServiceName, [in] Object Persi
IEIERFA(ESAFEiF()RiuNTRUST ED_CALLER %' SetTime System Void
INTERFACESAFE_FOR_UNTRUSTED_DATA "~ |[Ereeecae System Voud [in] String File, fin optional] Object vArgs,
“ 1) COM object creation ShowBrowserBar System Object [in] String bstrClsid, fin] Object bShow
| ShutdownWindows ~ System Void
| Suspend System Void
|‘ TileHorizontally System Void
| TileVerticalls Svetem Vil v
| < >
iefoces Properies
Name I Viewer Name Type Value Writeable
Idispatch 208204 No Application System Object System.__ComQbject False
Iobjectsafety CBSBDC81-93C1-11CF-3F20-09; No Parent System.Object System.__ComObject False
IObhE(tMithSitE FC4801A3-2BA9-11CF-A229-06! No
ISh&llDiSpEtCh D8FB15C@-C278-11CE-A49E-444553540000 Yes
IIShEllDiSpEtCHZ A4C6892C-3BA0-11D2-9DEA-BBCB4FB16162 Yes
IShellDispatch3 17716@CA-BBSA-411C-841D-BD38FACDEAA® Yes
Ishelloispatcl) gyisteap pointersirteiSheiiDispatch2
IshellDispatchS 866738B9-6CF2-4DES-8767-F704EBETAFAE Yes
IUnknown No
< >
< >

Operations ~
Invoke ShellExecute

Parameters:

Name Type Value Dir Optional
File SystemSting _calc i No|
VATGS SysemObject <ndll> 1 Ves
vDit System.Object <null> in Yes
vOperation System.Object <null> in Yes
wShow SystemObject <null> in Yes

Retur: System.Void

5 ounme Carcel

[F-2 CRLF Plain Text &7

Goal : Reach what OleViewDotNet did through C language.

Cvs C++

COM is based on a binary interoperability standard, rather than a language interoperability standard. Any
language supporting “structure” or “record” types containing double-indirected access to a table of
function pointers is suitable.

That being said, COM can declare interface declarations for both C++ and C . The C++ definition of an
interface, which in general is of the form:

1 dnterface ISomelInterface{

2 virtual RET_T MemberFunction(ARG1_T argl, ARG2_T arg2 /x, etc x/);
3 [0Other member functions]

4

5 s

‘ @ Did you know that a struct can store a pointer to some function?

then the corresponding C declaration of that interface looks like :

typedef struct ISomelInterface
{
ISomeInterfaceVtbl x pVtbl;
} ISomeInterface;

typedef struct ISomeInterfaceVtbl ISomeInterfaceVtbl;
struct ISomeInterfaceVtbl
{
RET_T (*MemberFunction) (ISomeInterface x this, ARG1_T argl,
10 ARG2_T arg2 /*, etc */);
11 [Other member functions]
12 T

1
2
3
4
5
6
7
8
9

What we've done above is to recreate a C++ class, using plain C. The ISomelnterface structis really a C++
class. A C++ class is really nothing more than a struct whose first member is always a pointer to its
VTable (an array of function pointers) -- an array that contains pointers to all the functions inside of that
class. The first argument passed to an object's function is a pointer to the object (struct) itself. (This
is referred to as the hidden " th-is " pointer.)

1. Obtain the “class factory” for our targeted CLSID. --> through DIIGetClassObject

Before a program can use any COM object, it must initialize COM, which is done by calling the function
Colnitialize. This need be done only once, so a good place to do itis at the very start of the program.

1 DEFINE_GUID(clsid, 0x13709620, 0xc279, Oxllce, Oxa4, Ox9e, 0Ox44, 0x45, 0x53, 0x54, 0x00, 0O

The above is a macro. A #define in one of the Microsoft include files allows your compiler to compile the

https://docs.microsoft.com/en-us/windows/win32/api/objbase/nf-objbase-coinitialize

above into a 16 byte array.

Next, the program calls DIIGetClassObject to get a pointer to shell32.dIl's IClassFactory object. Note
that we pass the CLSID object's GUID as the first argument. We also pass a pointer to our variable icf
which is where a pointer to the IClassFactory will be returned to us, if all goes well:

1 #include <windows.h>
2 #include <stdio.h>
3 #include <initguid.h>
4 #include <stdint.h>
5 //gcc .\comfunc.c -o com.exe -lole32 -luuid -loleaut32
6
7 //The CLSID {13709620-C279-11CE-A49E-4445535400} associated with the data and code that we
8 DEFINE_GUID(clsid, 0x13709620, 0xc279, Oxllce, Oxa4, Ox9e, Ox44, 0x45, Ox53, 0x54, 0x00, O
9
10 1int main(char argc, char *x*argv){
11
12 LPOLESTR clsidstr = NULL;
13 StringFromCLSID (&clsid, &clsidstr);
14 printf("Our targeted CLSID 1is %ls\n", clsidstr);
15 HRESULT hr;
16 hr = CoInitialize(NULL);
17
18 FARPROC D11lGetClassObject = GetProcAddress(LoadLibrary("shell32.d11"), "DllGetClassObj:
19 printf("DllGetClassObject is at 0x%p\n\n", DllGetClassObject);
20
21 IClassFactory *icf = NULL;
22 // Get shell32.DLL's IClassFactory
23 hr = DllGetClassObject(&clsid, &IID_IClassFactory, (void **)&icf);
24
25 if(hr !'= S_OK) {
26 printf("Dl1lGetClassObject failed to do something. Error %d HRESULT 0Ox%08x\n",
27
28 CoUninitialize();
29 ExitProcess(0);
30 }
31 //For debugging purposes
32 HMODULE shell32address = GetModuleHandle("shell32.d11");
33 printf("shell32.d1ll address is :%p \tIClassFactory's Vtable address is:%p \n", shell32
34 uint64_t val = (uint64_t)icf->1pVtbl - (uint64_t)shell32address;
35 printf("The offset is Ox%p - Ox%p = Ox%L1lx", icf->1pVtbl, shell32address, val);
36 return 0;
37 }

Now, If we compile the above code and run it, we will get a match between the resulted offset and the one
shown in OleViewDotNet which prove that we have now a pointer to the VTable of IClassFactory :

lléi OleView .NET v1.11 - 64bit - O X
File Reagistry Object Security Processes Storage Help

Reqgistry Properties)/CLSIDs V IClassFactory Properties v X
Filter: |13?09620—-:3279—11CE—A49E—4445535400 Maode: Contains v Apply
[=.#s 123700876_-970_11-5_310a_4115020100008 - Shall Autamatinn Saruica |

1128100 Fo

----- +o IDispatch

----- +o I0bjectSafety
+o I0bjectWithSite
----- +o IShellDispatch
----- +o IShellDispatch2
----- +o IShellDispatch3
----- +o IShellDispatch4d
----- +o IShellDispatchs
----- +o IUnknown

-] Factory Interfaces
{— IClassFactory

o FE

~
o
o]
o]
=
-"D
h

Name: IUnknown
IID: ©P8EEE880-0800-0600-C060-P0B00080E846

VTable Address: shell32. dll—ExSBaZDSl

Showing 1 of 7420 entries
PS C:\Users\t3nb3w\Desktop\COMFUN> gcc .\comfunc.c Com. exe
PS5 C:\Users\t3nb3w\Desktop\COMFUN> .\com.exe
Our targeted CLSID is {13789628-C279-11CE-A49E-444553540600 }
D1lGetClassObject is at @x00007fff1897e490

shell32.d11l address is :08007fff18910000 IClassFactery’s Vtable address is:00007fff18ec82d8
The offset is @x00007fff18910000 - 0xD0007fffl8ecB2d8 = Ox5b@2ds
PS C:\Users\t3nb3w\Desktop\COMFUN> |:|

2. Ask the class factory to instantiate an object of the class through Createlnstance method

Once we have the IClassFactory object, we can callits CreateInstance functionto geta
IDispatch object. Note how we use the IClassFactory tocallits CreateInstance function. We get
the function via IClassFactory 's VTable. Also note that we pass the IClassFactory pointer as the

first argument.

Note that we pass IDispatch's VTable GUID as the third argument. And for the fourth argument, we pass
a pointer to our variable id which is where a pointer to an IDispatch's object will be returned to us, if all

goes well:

// Create an IDispatch object
IDispatch *id = NULL;
hr = qcf->1pVtbl->CreateInstance(icf, NULL, &IID_IDispatch, (void *x*)&id);
if(hr !'= S_OK) {
printf("CreateInstance failed to do something. Error %d HRESULT 0x%08x\n", Get

CoUninitialize();

ExitProcess(0);

}

printf("[+]IDispatch's Vtable address is:%p \n",id->1pVtbl);

uint64_t vall = (uint64_t)id->1pVtbl - (uint64_t)shell32address;

printf("The offset IDispatch is 0x%p - 0x%p = Ox%Llx\n", id->1pVtbl , shell32address ,

Again compile and run :

['éf OleView NET v1.11 - b4bit — O bt
File Registry Object Security Processes 5torage Help

Registry Properties | CLSIDs | 13709620-c279-11ce-a49.. /" 13709620-c279-11ce-a... | ~ X &

CLSID Supported Interfaces Type Library :g—
[

Interfaces: Refresh Q_:
o

MName o Methods WTable Offset ~ IS

IDispatch 00020400-0000-0000-CO00-000000000046 7 shellSZdIl@ o

IObjectSafety CBSBDC81-93C1-11CF-8F20-00805F2CD064 3 shell32.dI+0x59C 760 —

IObjectWithSite FC4801A3-2BA9-11CF-A229-00AA003D7352 5 shell32 dIl+0x59C720

IShellDispatch D8F015C0-C278-11CE-A49E-444553540000 3 shellSQ.dIHUngE?BB

IShellDispatch? A4CE892C-3BA9-11D2-9DEA-D00C04FB16162 3 shell32 dIl+0x59C 7588

IShellDispatch3 177160CA-BBESA-411C-841D-BD38FACDEAAD 3 shell32.dI+0x59C 788

IShellDispatch4 EFD84B2D-4BCF-4298-BE25-EB542A59FBDA 3 shell32 dIl+0x59C 7588 v

< >

Factory Interfaces:

Name o Methods VTable Offset

IClassFactory 00000001-0000-0000-C000-000000000046 3 shell32.dlI+0x5B0208

IUnknown 00000000-0000-0000-C000-000000000046 3 shell32._dll+0x5B0208

L4 >

PS C:\Users\t3nb3w\Desktop\COMFUN> .%\com.exe
Our targeted CLSID is {13709620-C279-11CE-A49E-444553540000}
D11GetClassObject is at Ox000a7fff1897=490

shell32.dl]l address is :0@88@7fff1391606

[+]IClassFactory’s Vtable address is:00007fff18ecB2ds

The offset IClassFactory is @x@0007{{18ec82d8 - Ox0000711118910000 = 8x5b82d3
[+]IDispatch’s Vitable address is:00007fffl8eac/88

The offset IDispatch is 8x0@007/ffflB8eac/88 - OxBORA/{{118910008 = Bx59c/88

@ IDispatch interface usage : Exposes objects, methods and properties to programming tools and
other applications that support Automation.

3. Get ShellExecute ID

Once we have the IDispatch object, we can call its GetiIDsOfNames function to get the COM dispatch
identifier (DISPID) of ShellExecute .

Note that we pass the ID1ispatch pointer as the first argument. We pass a reference of ID_NULL as
the second argument(Reserved for future use. Must be [ID_NULL.), for the third argument, we pass
ShellExecute as WCHAR to be mapped, for the fourth argument the count of the names to be mapped(1
in our case), for the fifth argument the locale context in which to interpret the names. And last argument
we pass the address of dispid which is the id value of ShellExecute that will be returned to us, if all goes

well:

// get function ID

https://docs.microsoft.com/en-us/windows/win32/api/oaidl/nf-oaidl-idispatch-getidsofnames
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dispidattribute?redirectedfrom=MSDN&view=net-6.0

WCHAR *member = L'"ShellExecute";
DISPID dispid = 0;

hr = id->1pVtb1l->GetIDsOfNames(id, &IID_NULL, &member, 1, LOCALE_USER_DEFAULT, &dispid
if(hr !'= S_OK) {
printf("GetIDsOfNames failed to do something. Error %d HRESULT 0x%08x\n", GetL
CoUninitialize();

ExitProcess(0);

printf ("DISPID 0x%08x\n", dispid);

Again compile and run :

L: Y
CLSID | Text Type Type Value A
{13639463-00DB-4646-803D 528026140088} UpdateCollection Class InProcS... C:\Windows\SyswiC
_ {13709620-C279-11CE -A49E -44 4553540000} Shell Automation Service InFrocS... ZSystemBoot?\syst
" m s/
jm s
_ _ : Bs (81
MName | GUID | TypeKind | Flags | Functions | Variables | Interfa... | Id= | A E\Sysl
ShellF olderiew {62112841-E... COCLASS (5) CanCreate 0 0 2 22 iwshafC
ShelFolderviewOptions {74249340-C... ENLUM [0) 0 7 0 23 ips'wC
|ShelDispatch {DBFOISCO-C... DISPATCH (4] Hidden, D... 30 0 1 24 jramFi
|ShelDispatch2 {A4CBB92C-3... DISPATCH (4) Hidden, D... 39] 1 25 23 [xB1
JramFi
&4, Typelnfo IShellDispatch? [Updated IShellDispatch] - O X Eheyst
s
Name | memid | FuncKind.InvKind.CallCo... | rcType | Params A Ek‘S}'St
FindFiles 0x60020013 dispatch, func, stdcal Void ;‘Es‘f'é'
FindComputer 0x60020014 dispatch, func, stdcall Void I
Refreshienu OxB0020015 dizpatch, func, stdcall Yoid W
ControlPanelltem 0=60020016 dispatch, func, stdcall Yoid betiDirBstr fySWI: v
|sRestricted 060030000 dispatch, func, stdcall 14 Group:Bstr, Restriction: Bstr e
ShelExecute 0x600300070 dispatch, func, stdcall File:Bstr, whrgs:Varant, v... >
FindPrinter jﬂDxSDDGDDDQ dispatch, func, stdeall Void Name:Bstr, location:Bstr, ... ¥
< >

Functions | Variables] Interfaces I/

f
Close
f

Execute generic command / IC

PROBLEMS QUTPUT TERM INA DEBUG COMNSOLE

PS5 C:\Users\t3nb3w\Desktop\COMFUN> .\com.exe
Our targeted CLSID is {13709620-C279-11CE-A49E-444553540000 }
D11GetClassObject is at @x00007fff1897e490

shell32.d1]l address is :00007fff18910000

[+]IClassFactory’s Vtable address is:08087fff18ec02d8

The offset IClassFactory is 0xB00Q7ff{18ec02d8 - Ox000Q7F1118910008 = Ox5bB2d8
[+]IDispatch’s Vitable address is:08087fff18eac788

The offset IDispatch is @x80007fff18eac788 - Ox00007fff18910000 = Bx59c788
DISPID | 9x60830881

4.Initialize parameters to be used on Invoke method

According to MSDN, Invoke goal is to provide access to properties and methods exposed by an object and
this is what we need to pop up the calc:

1 HRESULT Invoke(

2 [in] IDispatch *this

3 [in] DISPID dispIdMember,
4 [in] REFIID riid,

5 [in] LCID lcid,

6 [in] WORD wFlags,

7 [in, out] DISPPARAMS #*pDispParams,
8 [out] VARIANT *pVarResult,
9 [out] EXCEPINFO *pExcepInfo,
10 [out] UINT *puArgErr

11)3

In our situation, note that we pass the ID1ispatch pointerasthe 1 arg. Then,we pass the dispid id of
ShellExecute as the 2 arg. We pass a reference of ID_NULL as the 3 arg(Reserved for future use. Must
be IID_NULL.), for the 4 arg the locale context in which to interpret the names, for the 5 arg flags describing
the context of the Invoke call (in our case we pass DISPATCH_METHOD).

The 6 arg pointer to a DISPPARAMS structure containing an array of arguments passed ShellExecute ,
an array of argument DISPIDs for named arguments, and counts for the number of elements in the arrays.

1 typedef struct tagDISPPARAMS {

2 VARIANTARG *rgvarg;//An array of arguments.
3 DISPID *rgdispidNamedArgs;

4 UINT cArgs; //The number of arguments.
5 UINT cNamedArgs;

6 } DISPPARAMS;

@ VARIANTARG describes arguments passed within DISPPARAMS, and VARIANT to specify
variant data that cannot be passed by reference.

In our case, we need only to setup 2 elements to reach our goal :

{
VARTYPE 5

WORD wReservedl;
WORD wReserved2;

https://docs.microsoft.com/en-us/windows/win32/api/oaidl/ns-oaidl-dispparams

LONGLONG 11val;
LONG INER R
BYTE bval;
SHORT iVal;
FLOAT fltval;
DOUBLE dblval;

VARIANT BOOL boolVal;

VARIANT BOOL _ OBSOLETE__VARIANT_ BOOL;
SCODE scode;

cY cyVal;

DATE date;

BSTR bstrval;

IUnknown *punkVal;

Before continuing let me highlight some stuff regarding BSTR(Basic string or binary string):

@ A BSTR (Basic string or binary string) is a string data type that is used by COM, Automation, and
Interop functions. Use the BSTR data type in all interfaces that will be accessed from script.

A BSTR is a composite data type that consists of a length prefix, a data string, and a terminator.
For more details check : https://docs.microsoft.com/en-us/previous-
versions/windows/desktop/automat/bstr

// initialize parameters

1

2

3 //VARIANT describes arguments passed within DISPPARAMS.
4 VARIANT args = { VT_EMPTY };

5 args.vt = VT_BSTR;

6 args.bstrVal = SysAllocString(L"calc");

7
8
9

// Contains the arguments passed to ShellExecute method.
DISPPARAMS dp = {&args, NULL, 1, 0};

At this stage, we prepared all the necessary ingredients to pop the calc using the invoke method; for the rest
of the arguments that | did not mention just take a look on: https://docs.microsoft.com/en-
us/windows/win32/api/oaidl/nf-oaidl-idispatch-invoke

5. Pop the calc

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/automat/bstr
https://docs.microsoft.com/en-us/windows/win32/api/oaidl/nf-oaidl-idispatch-invoke

VARIANT output = { VT_EMPTY };
hr = id->1pVtbl->Invoke(id, dispid, &IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD, &dp,
if(hr = S_OK) {
printf("Invoke failed to do something. Error %d HRESULT 0x%08x\n", GetLastErro
CoUninitialize();

ExitProcess(0);

id->1pVtbl->Release(id);
icf->1pVtb1l->Release(icf);
SysFreeString(args.bstrval);

CoUninitialize();

So next, we call the IDispatch's Release and IClassFactory's Release functions.Once we
do this,our id and -{icf variables no longer contains a valid pointer to anything. It's garbage now. We
call aslo SysFreeString to deallocates a string allocated previously.

Finally, we must call CoUninitialize toallow COM to clean up some internal stuff. This needs to be
done once only, so it's best to do it at the end of our program (but only if CoInitialize succeeded).

Demo:

on View Go Run Terminal Help

PROBLEMS ~ OUTPUT [TERMINAL DEBUG CONSOLE

PS C:\Users\t3nb3u\Desktop\COMFUN> .\com.exe []

Conclusion

As you notice the blog was long, but | truly share with you all the things | learned regarding the internal of
COM which represent a fundamental pillar for Windows as OS. (COM is a big ocean of course | did not
cover all things like single thread apartment, proxy/stub, security aspects, | promise my next parts will be
about that).

Since I'm very obsessed with Windows especially when I'm facing in security community like James
FORSHAW talks regarding COM, also Matt Nelson’s blog that explain lateral movements through DCOM...
as well as some AVs that expose misconfigure COM object that led to LPE and self-bypass a poc was done
by Denis Skvortcov.

What | mentioned in the previous paragraph, combined with the fact that one day | tried to implement WMI
using golang, but | failed that represents the reasons why | wrote this blog since | knew nothing about COM,
this is how it works, and now we need to learn theory and basic stuff, also slow down and seek to deeply
understand the topic. This patience will be fruitful since you can now explore and develop stuff with
creativity.

Final Note: | am not a Windows Internal expert I'm just a learner, If you think | said anything incorrect
anywhere, feel free to reach out to me and correct me, | would highly appreciate that. And finally, thank you
very much for taking your time to read this post.

References

GitHub - Seggaeman/DeveloperWorkshopCOMATL3: Companion CD content for the book "D...
GitHub

COMin plain C
CodeProject

The Component Object Model - Win32 apps
docsmsft

Abstract Class in C++ | Implementation of Constructor & Destructor
EDUCBA

COM Interface Basics
CodeProject

COM classes, Objects, Factories

https://twitter.com/tiraniddo
https://twitter.com/enigma0x3
https://twitter.com/Denis_Skvortcov

CoGetClassObject function (combaseapi.h) - Win32 apps
docsmstt

DIIGetClassObject function (combaseapi.h) - Win32 apps
docsmstt

Home - RingZer0 CTF

