
1/8

By Yarden Shafir

HyperGuard – Secure Kernel Patch Guard: Part 1 – SKPG
Initialization

windows-internals.com/hyperguard-secure-kernel-patch-guard-part-1-skpg-initialization

This will be a multi-part series of posts describing the internal mechanisms and purpose of

Secure Kernel Patch Guard, also known as HyperGuard. This first part will focus on what

SKPG is and how it’s being initialized.

Overview

In the world of Windows security, PatchGuard is a uniquely undocumented and hardly any

“unofficial” documentation. Thus, there are conflicting opinions and rumors about the way it

operates and different “PatchGuard bypasses” that get published aren’t very reliable. Still,

every few years some helpful PG analysis gets published, shedding some light on this

mysterious feature. This blog post is not about PatchGuard so we won’t go into much detail

about it, but it discusses a similar and related feature, so some basic knowledge of

PatchGuard is needed. Here are a couple of things needed to understand of the rest of the

post:

The purpose of PatchGuard is to monitor the system for changes in kernel space that

should not happen on a normal system and crash it when those are detected. This

doesn’t mean any unusual data change – PatchGuard monitors a pre-determined list of

data structures that are common targets for kernel exploitation or rootkits, such as

modifications to HalDispatchTable or callback arrays, or changes to control

registers or MSRs to disable security features. The full list of monitored structures and

pointers is not documented and the information that does get published by Microsoft is

left vague on purpose.

PatchGuard doesn’t monitor everything, all the time. It runs periodically, checking for

certain changes every time it runs – it won’t necessarily crash the system right when a

malicious change is done and a system might run for a long time with such changes.

There is no guarantee that PatchGuard will ever detect and crash the system. This also

means it is hard to validate potential bypasses.

The main weakness of PatchGuard and the reason for all the obscurity around its

implementation is the fact that it monitors Ring 0 code and data – from code that runs in

Ring 0 . There is nothing preventing a rootkit that already gained Ring 0 code execution

privileges from patching the code for PatchGuard itself and disabling or bypassing it. The

only thing stopping this scenario is PatchGuard’s obscurity and the fact that its code is hard

to find and uses a range of obfuscation techniques to make itself hard to analyze and disable.

https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-1-skpg-initialization/

2/8

There is a lot more to say about PatchGuard but, like I mentioned, this is not the topic of the

post. So, I’ll skip right to discussing PatchGuard’s newer sibling – HyperGuard, also known

as Secure Kernel Patch Guard, or SKPG . This new feature leverages the existence of Hyper-V

and VBS to create a new monitoring and protection capability that is similar to PatchGuard

but not susceptible to the same weaknesses since it is not running as normal Ring 0 code

and cannot be tampered by normal rootkits.

Finding HyperGuard

HyperGuard takes advantage of VBS – Virtualization Based Security. This capability that

was added in the past few years is made possible by the creation of Hyper-V and Virtual Trust

Levels (VTL s). The hypervisor allows creating a system where most things run in VTL0 ,

but some, more privileged things, run in higher VTL s (currently the only one implemented

is VTL1) where they are not accessible to normal processes regardless of their privilege level

– including VTL0 kernel code. Put simply, no VTL0 code can interact with memory in

VTL1 in any way.

Having memory that cannot be tampered with even from normal kernel code allows for many

new security features, some of which I’ve written about in the past and others are

documented in other blogs, conference talks and official Microsoft documentation. A few

examples include KCFG , HVCI and KDP .

This is also what allows Microsoft to implement HyperGuard – a feature similar to

PatchGuard that can’t be tampered with even by malicious code that managed to elevate

itself to run in the kernel. For this reason, HyperGuard doesn’t need to hide or obfuscate

itself in any way, and it’s so much easier to analyze using static analysis tools.

The VTL1 kernel, also known as the secure kernel, is managed through

SecureKernel.exe . This is also the binary where HyperGuard is implemented. If we open

securekernel.exe in IDA we can easily find all the code implementing HyperGuard ,

which all uses the prefix Skpg :

This series will cover some of those functions, starting from the first ones being called during

boot: SkpgInitSystem :

3/8

HyperGuard Initialization

HyperGuard initialization mostly happens during the normal kernel’s Phase 1

initialization, but requires multiple steps. The first step starts with a secure call where

SKSERVICE=SECURESERVICE_PHASE3_INIT . This leads to SkInitSystem which will

initialize SKCI (Secure Kernel Code Integrity) and call into SkpgInitSystem . This

function sets up the basic components of SKPG – its callback, timer, extension table and

intercept functions, all of which I’ll discuss in more detail later in this series. At this point

SKPG is not fully initialized – that only happens later in response to another request from

the normal kernel. For now, only a few SKPG globals are being set:

https://windows-internals.com/wp-content/uploads/2022/01/skpg_functions.png

4/8

Some interesting components to notice at this stage are:

SkpgPatchGuardCallback – a callback which is going to be called every time

HyperGuard checks need to run and will invoke the target function

SkpgPatchGuardCallbackRoutine .

SkpgPatchGuardTimer – a secure kernel timer object that is going to control the

execution of some HyperGuard checks. It gets set to run at a random time so checks

will happen at different intervals, making periodic checks harder to avoid. The function

set its callback function to SkpgPatchGuardTimerRoutine .

Intercept function pointers – other than the periodic checks controlled by the timer,

HyperGuard also has a few intercept functions, which execute every time a certain

operation is being intercepted by the Hypervisor. The operation being intercepted is

pretty clear from the function names, but I’ll cover them in more detail later anyway.

The global variables for these are:

ShvlpHandleMsrIntercept – points to SkpgxInterceptMsr

ShvlpHandleRegisterIntercept – points to SkpgxInterceptRegister

ShvlpHandleRepHypercallIntercept – points to

SkpgInterceptRepHypercall

Optional variables – there are a few other global variables that did not fit in the

screenshot and get initialized based on the flags received as part of the input argument,

or other optional configuration:

SkpgInhibitKernelVaProtection

SkpgNtKvaShadow

SkpgSecureExtension

After initializing all the global variables, the function returns and the rest of the secure kernel

initialization continues. For now, the timer is not scheduled and HyperGuard is effectively

“dormant”. HyperGuard is only fully “activated” later – through a call to SkpgConnect .

There are three ways to call SkpgConnect and all start from a call by the normal kernel:

https://windows-internals.com/wp-content/uploads/2022/01/SkpgInitSystem.png

5/8

HyperGuard Activation

Connect Software Interrupt – the PatchGuard Path

The most interesting HyperGuard activation path is through PatchGuard . This SKPG

activation path, like all others, begins with a secure call. This secure call, with SKSERVICE=

SECURESERVICE_CONNECT_SW_INTERRUPT , originates from the normal kernel function

VslConnectSwInterrupt . This leads, as usual, to the secure kernel handler which calls into

IumpConnectSwInterrupt and from there to SkpgConnect , passing it all the data that

was sent by the normal kernel.

When we search for calls to VslConnectSwInterrupt we see two calls – one from

PsNotifyCoreDriversInitialized that I’ll cover soon and a second one from

KiConnectSwInterrupt :

KiConnectSwInterrupt is only called by one caller – an anonymous function in

ntoskrnl.exe that has no name in the public symbols. This is an extremely large function

that calls into other anonymous functions and has a lot of weird and seemingly unrelated

functionality. This is one of the PatchGuard initialization routines, which does the “real”

activation of HyperGuard , supplying the secure kernel with memory protection ranges and

targets which I will discuss later when talking about SKPG extents.

I encourage you to follow the call stack yourselves and get a bit of insight into the mysteries

of PatchGuard initialization, but if I start covering PatchGuard details this series will

quickly become a book so I will skip the details here. Let’s just trust me when I say that this

all also happens in the context of Phase 1 initialization and is the first point where

HyperGuard is activated.

Once HyperGuard is fully activated, a global variable SkpgInitialized is set to TRUE .

This variable is checked every time SkpgConnect is called, and if set the function will return

immediately and not make any changes to any SKPG initialization data. This means that the

two other activation paths that will be described here will only activate HyperGuard if

PatchGuard is not running and will result in less thorough protection of the machine. If

PatchGuard is active, then the other two activation paths will return without doing

anything.

Connect Software Interrupt – Phase1 Initialization

https://windows-internals.com/wp-content/uploads/2022/01/KiConnectSwInterrupt.png

6/8

The second code path into VslConnectSwInterrupt goes through

PsNotifyCoreDriversInitialized . This is also happening as part of Phase 1

initialization, but later than the PatchGuard path:

As we can see here, the call to VslConnectSwInterrupt is done with empty input variables,

meaning no memory ranges or extra data is sent to HyperGuard and it will only use its basic

functionality. If PatchGuard is running, then at this point SKPG should already be

initialized and the call will return with no changes to SKPG , so this path is only needed if

PatchGuard is not active.

Phase3 Initialization

The last case where HyperGuard is activated happens during Phase 3 initialization. This

happens in response to a secure call with

SKSERVICE=SECURESERVICE_REGISTER_SYSTEM_DLLS . It will also call into SkpgConnect

with no input data, simply to initialize it if nothing else has already.

On the normal kernel side: In PspInitPhase3 the system checks the VslVsmEnabled

global variable to learn whether Hyper-V is running and VSM is enabled. If it is, the system

calls VslpEnterIumSecureMode – a common function to generate a secure call with a given

service code and arguments packed into an MDL . The system enters secure mode with

service code SECURESERVICE_REGISTER_SYSTEM_DLLS :

https://windows-internals.com/wp-content/uploads/2022/01/PsNotifyCoreDriversInitialized.png

7/8

Once a secure call reaches the secure kernel it is handled by IumInvokeSecureService ,

which is pretty much just a big switch statement, calling the correct function or functions for

each service code. In the case of code SECURESERVICE_REGISTER_SYSTEM_DLLS , it calls

SkpgConnect and then uses the data passed in by the kernel to register system DLL s:

As I mentioned, this is the last time SkpgConnect is called, right at the end of system

initialization. This is done in case SKPG hasn’t been initialized at an earlier stage already. In

this case, SkpgConnect is called with almost no input data, to only initialize the most basic

https://windows-internals.com/wp-content/uploads/2022/01/PspInitPhase3.png
https://windows-internals.com/wp-content/uploads/2022/01/CallToSkpgConnect.png

8/8

SKPG functionality. If SKPG has already been initialized earlier, this call will return without

changing anything.

HyperGuard Activation – Diagram

This is it for part 1 of this series. So far, we only covered the general idea of what

HyperGuard is and its initialization paths. Next time we will dive into SkpgConnect to see

what happens during SKPG activation and learn more about the types of data SKPG

protects and how.

https://windows-internals.com/wp-content/uploads/2022/01/SKPG_activation_diagram.png

