
1/17

The hidden side of Seclogon part 2: Abusing leaked
handles to dump LSASS memory

splintercod3.blogspot.com/p/the-hidden-side-of-seclogon-part-2.html

 

by splinter_code - 7 December 2021




 

https://splintercod3.blogspot.com/p/the-hidden-side-of-seclogon-part-2.html
https://blogger.googleusercontent.com/img/a/AVvXsEg1EDy9Uy7-DOXclChWndDksL3NFfapBe0EuSm9qRZeWVU12s_hJB0CXqRXc7uHTovvQsf9EB2oI4Y53q1t1gOepSF9B2nBiyMySHAxhV_OhK_qIHh0ip-Rg3PgfdoSz6GSrNNtOcqDByhKoWhS1sFXnMWN9iHy45mG1lSRQeVZqusrj4s1W4TxXxE8=s1000


2/17




Credential dumping is one of the most common techniques leveraged by attackers to

compromise an infrastructure. It allows to steal sensitive credential information and enables

attackers to further move laterally on the target environment.

On Windows systems there is a SSO (Single Sign-On) mechanism in which the user types the

password only once and is automatically logged on every time it is needed as long as the user

session on the operating system is alive. The main advantage of it is improving the usability

of the system by not requesting credentials multiple times.

The main drawback of this approach is that those credentials must be stored somewhere. If

the system has to authenticate the user automatically, the system must hold the user

credentials in some form, that's a fact.

In particular, for Windows systems the process in charge for this is lsass.exe (Local Security

Authority Subsystem Service).



Lsass is a critical process and contains a pile of treasures from an attacker perspective. For

this reason dumping the memory of lsass process is something often performed when

attackers carry out their malicious operations.

With that in mind most EDR/AV try to protect the process memory from

unauthorized/malicious access. Like every evasion/detection method is always a game

of cat-n-mouse.



New detection methods could be created only if attacking methods are known, that's another

fact.

Considering that, in this blog post i'm going to release a new undocumented/unknown way to

perform a memory dump of LSASS in a stealthy way. Giving detailed internals on how it

works, it should ease (making known what is unknown) the development of effective

detection.




On the edges of detection

The most simple way of dumping lsass memory usually involves two main operations:

Opening a process handle to the lsass PID through an OpenProcess call with the

access PROCESS_QUERY_INFORMATION and PROCESS_VM_READ;

Using MiniDumpWriteDump to read all the process address space of lsass and save

it into a file on the disk. Note that MiniDumpWriteDump heavily relies on the usage of

the NtReadVirtualMemory system call that allows it to read memory of remote

processes.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtReadVirtualMemory.html


3/17

Now, where does the detection of lsass memory dumping usually occur? On both

operations!

The first detection spot usually occurs on the usage of OpenProcess/NtOpenProcess.

The Windows kernel allows your driver to register a list of callback routines for thread,

process, and desktop handle operations. This can be achieved through

ObRegisterCallbacks. 



Two structs are required to register a new callback: OB_CALLBACK_REGISTRATION

and OB_OPERATION_REGISTRATION.

In particular, the OB_OPERATION_REGISTRATION struct allows to specify a

combination of parameters to monitor any newly created/duplicate process handle

directly from the kernel. 

To mention an example, Sysmon event id 10 is based on this mechanism.




The second detection spot usually occurs on the usage of NtReadVirtualMemory, used

internally also by ReadProcessMemory.



In this case the implementation may vary. 



The most used approach is the Inline Hooking to intercept NtReadVirtualMemory calls

that target the lsass process. The problem with this approach is that the monitoring occurs at

the same ring level of the process itself, so techniques like direct system calls or unhooking

would easily bypass this kind of detection.

A better approach is using the Threat Intelligence ETW to receive notifications directly from

the kernel on specific functions invocation. E.g. whenever a NtReadVirtualMemory is called,

the kernel function EtwTiLogReadWriteVm will be used to track the usage and send the

event to the registered consumers.



Most modern and effective EDR go for this way.




Known dumping methods

It's important to highlight how some of the known (and most stealthy) dumping methods

have inspired me in one way or another:

Evading WinDefender ATP credential-theft: a hit after a hit-and-miss

startby @matteomalvica and @b4rtik:

Create a snapshot of the process in order to perform indirect memory reads by

using the snapshot handle. The snapshot handle is then used in the

MiniDumpWriteDump call instead of using the target process handle directly. 



Duping AV with handles by @SkelSec:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-ntopenprocess
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obregistercallbacks
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_callback_registration
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-10-processaccess
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtReadVirtualMemory.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://0x00sec.org/t/defeating-userland-hooks-ft-bitdefender/12496
https://undev.ninja/introduction-to-threat-intelligence-etw/
https://www.matteomalvica.com/blog/2019/12/02/win-defender-atp-cred-bypass/
https://twitter.com/matteomalvica
https://twitter.com/b4rtik
https://skelsec.medium.com/duping-av-with-handles-537ef985eb03
https://twitter.com/SkelSec


4/17

Reuses already opened handles to the lsass process thus avoiding a direct

OpenProcess call on lsass.



Dumping LSASS in memory undetected using MirrorDump by

@_EthicalChaos_:

Load an arbitrary LSA plugin that performs a duplication of the lsass process

handle from the lsass process into the dumping process. So the dumping process

has a ready to use process handle to lsass without invoking OpenProcess.

The above descriptions are just a brief, I strongly recommend you to read the blog posts in

order to have more insights.

A sharp eye could catch that every mentioned method above tries to play on the edges of

detection to stay under the radar. 

I want to mention a specific thing about the technique of reusing already opened lsass

handles. While it's a very valid technique, it has the clear disadvantage that on most systems

you won't easily find a handle holder that's not lsass itself. You can verify it with a simple

handles enumerator tool:







So it means that if you want to get one of those process handles in your process you still need

to open a handle to lsass to duplicate it. 

Wouldn't it be nice to coerce a Windows System Service (not lsass clearly) to open a handle

for you? Let's find out...




The bug: a bad assumption in SecLogon



Now you are wondering: why are you going to talk about the Secondary Logon Service

(seclogon) in a blog post about credential dumping?

Long story short: I have spent a lot of time reversing the seclogon service while developing

my RunasCs tool and I found many interesting weirdnesses in it.



If you notice, this blog post is a 2nd part of a never written part 1. I hope one day I can find

enough time to document all the internals involved in RunasCs, I swear it contains some

crazy stuff.

https://www.pentestpartners.com/security-blog/dumping-lsass-in-memory-undetected-using-mirrordump/
https://twitter.com/_EthicalChaos_
https://github.com/antonioCoco/RunasCs


5/17

Back to the point... The seclogon service is a RPC server that basically exposes 1 function:

SeclCreateProcessWithLogonW.



Whenever you use CreateProcessWithTokenW or CreateProcessWithLogonW in your

program you will land in the seclogon service.

The seclogon function that implements all the logic of the process creation with alternate

credentials is SlrCreateProcessWithLogon called from SeclCreateProcessWithLogonW. It

has the following definition:




DWORD SlrCreateProcessWithLogon(

        RPC_BINDING_HANDLE BindingHandle,


        PSECONDARYLOGONINFOW psli,

        LPPROCESS_INFORMATION ProcessInformationOutput) 




If you are familiar with the usage of the CreateProcessWithTokenW and

CreateProcessWithLogonW you might know that the newly created process is a child of the

calling process. So in some way the seclogon service must know which is the PID of the

process performing the RPC call. Below the reversed code which get a handle to the caller:




So it basically impersonates the caller and then tries to open the calling process with the

PID psli->dwProcessId. This part of the code is very important because the hCaller

process handle is then used for a series of operations to create the newly requested process.

To change the parent PID of the new process, the process attributes are updated in order to

match it with the caller (hCaller):

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw


6/17

But where does the psli->dwProcessId value come from?




After some time reversing advapi32.dll I noticed that value is provided as an input to the

RPC call, so technically we can provide any value we want. Below a snippet of code reversed

from CreateProcessWithLogonCommonW called internally by CreateProcessWithLogonW:

And then the invocation of the RPC call:

 

So the seclogon service makes the bad assumption that if the caller is able to open the PID

provided as the input of the RPC call, it means it's the process itself performing the call.

 




Great! Now we know we can spoof the PID of the caller and we can have a PPID spoofing

primitive. But... we still miss one thing: some valid user credentials.

Luckily enough the seclogon service provides the so-called

LOGON_NETCREDENTIALS_ONLY feature that allows to get (almost) a copy of the

caller process token valid locally on the machine without providing any valid credentials.

To add some swag points, it's still possible to use CreateProcessWithLogonW without

generating the stub to perform the RPC call directly. 

If you have a look at the above reversed code of CreateProcessWithLogonCommonW you can

notice that the value of the pSeclSli.ulProcessId is taken by calling GetCurrentProcessId.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid


7/17

Below the reversed code:




It basically takes the PID from the current process TEB. So if we patch that value, we are

sure that CreateProcessWithLogonW will the the job for us to spoof the pid while

performing the RPC call:




void SpoofPidTeb(DWORD spoofedPid, PDWORD originalPid, PDWORD originalTid) {

    CLIENT_ID CSpoofedPid;


    DWORD oldProtection, oldProtection2;

    *originalPid = GetCurrentProcessId();


    *originalTid = GetCurrentThreadId();

    CLIENT_ID* pointerToTebPid = &(NtCurrentTeb()->ClientId);


    CSpoofedPid.UniqueProcess = (HANDLE)spoofedPid;

    CSpoofedPid.UniqueThread = (HANDLE)*originalTid;


    VirtualProtect(pointerToTebPid, sizeof(CLIENT_ID), PAGE_EXECUTE_READWRITE,
&oldProtection);


    memcpy(pointerToTebPid, &CSpoofedPid, sizeof(CLIENT_ID));

    VirtualProtect(pointerToTebPid, sizeof(CLIENT_ID), oldProtection, &oldProtection2);


}




Time for PPID spoofing Demo!




Unfortunately, even if the seclogon process opens a new process handle to lsass to create a

child process, we cannot duplicate that handle from seclogon because it's closed shortly

after. I didn't want to deal with race conditions, so I started to explore some alternative way

to get my hands on a lsass process handle... (Well, technically it's possible to steal that lsass

handle in a reliable way. But this is something for another blog post :D)








8/17

When a series of faults stack nicely together

At this point we have a nice PPID spoofing feature offered by the seclogon service, but still far

away from having a lsass handle somewhere.

The first thing that came to my mind was this vulnerability discovered by @tiraniddo, and

described here -->  Exploiting a Leaked Thread Handle.



It's one of my favourite logic bugs I have ever seen, I strongly recommend you to go through

that blog post.




This vulnerability allows you to escalate your privileges from a normal user to SYSTEM. 

What he had found out is that you can trick the seclogon service into leaking a thread

handle of a thread running as SYSTEM. In particular, the leakage occurs through the usage

of the pseudo handle -2 (GetCurrentThread) provided as the standard stream

handle value in the startup information structure and uses CreateProcessWithLogonW

to trigger the seclogon service.

While the vulnerability has been fixed (and you cannot specify a pseudo handle anymore), it's

still possible to leak handles from other processes if you combine it with the PPID

spoofing primitive. You still need to have the rights to open the target process, so we are not

crossing any security boundaries. But... to dump lsass memory you need admin privileges

anyway so that's enough for our purpose :D

The scenario is a bit articulated, let's proceed step-by-step to understand the whole picture...

Either CreateProcessWithLogonW and CreateProcessWithTokenW allows to specify a

LPSTARTUPINFOW struct for the parameters of the process. One of the things you can

specify are the Standard Streams for the process that allows to redirect input and output

of console processes on a different stream, e.g. a named pipe.



While these handles are inherited normally while performing a normal process creation, this

won't happen in the case of the seclogon service. This occurs because the seclogon is not the

real parent of the process so handle inheritance won't work by design.

For this reason the seclogon service has to "emulate" the same behavior. 



Let's reverse how this is implemented... 

When you specify the flag STARTF_USESTDHANDLES in the startup information a new flag

is set to true, reversed code from SlrCreateProcessWithLogon below:

https://bugs.chromium.org/p/project-zero/issues/detail?id=687
https://twitter.com/tiraniddo
https://googleprojectzero.blogspot.com/2016/03/exploiting-leaked-thread-handle.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentthread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfow


9/17




Then the new process with the alternate credentials is created suspended:

Shortly after the flag signaling that the standard stream handles have been specified is

checked and SlpSetStdHandles is invoked:

So the function SlpSetStdHandles is the one in charge to duplicate the standard

stream handles from the caller to the new process. For the bravest: here you can find the

whole reversed function --

> https://gist.github.com/antonioCoco/706760df95749974b89546fb8d9fa445

In particular, this is the relevant snippet that allows to leak handles:

https://gist.github.com/antonioCoco/706760df95749974b89546fb8d9fa445


10/17




The magic happens of course in the DuplicateHandle function. The standard streams

handles are duplicated from the hCaller process to the newly created process. We can

control the hCaller with the PID spoofing trick. We can also control the standard

stream value by using the @tiraniddo's discovery. So the two faults stack very nicely

together and could evict lsass handles from lsass itself without interacting directly.




What's the plan to leak lsass process handles then?

1. Use NtQuerySystemInformation and get all the process handle values that

resides in lsass, some of them are for lsass itself;

2. Patch the pid value in the current process TEB and specify the lsass PID;

3. Prepare the CreateProcessWithLogonW calls:

Specify the flag LOGON_NETCREDENTIALS_ONLY as the dwLogonFlags

parameter;

Specify the flag STARTF_USESTDHANDLES in lpStartupInfo->dwFlags;

Specify the process handle values to leak from lsass in lpStartupInfo-

>hStdInput, lpStartupInfo->hStdOutput and lpStartupInfo->hStdError. So three

at a time.

4. Iterate the CreateProcessWithLogonW calls until a leaked lsass process handle is

found in the new process;

5. Enjoy the leaked lsass handle in the new process :D




Demo time! 




Note: some breakpoints on the seclogon service has been added on windbg to demonstrate

the whole process better




https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle
https://twitter.com/tiraniddo
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation


11/17

As shown in the above Demo, a dump of lsass is performed through a leaked handle and

saved to the disk. In this case I have used the MiniDumpWriteDump function.




One thing we need to consider while using this function is that it tries to open a new handle

to lsass and we definitely want to avoid that. The reason for this behavior seems to be

inside RtlQueryProcessDebugInformation called internally by MiniDumpWriteDump,

it opens a new handle to lsass instead of using the one provided in the call. 



To solve this issue i have hooked NtOpenProcess before calling MiniDumpWriteDump.

In the hooked function the leaked lsass handle is returned instead of forwarding the call

to the kernel. 

Another thing to take care of is to prevent the leaked handle from being closed by

RtlQueryProcessDebugInformation. We could provide a duplicate of the leaked handle to

solve the problem, but we want to avoid that a registered kernel callback is catching our

dumping process for the newly duplicated handle.



One smarter thing to do is to use SetHandleInformation and protect the leaked handle

from any closing attempts through the flag

HANDLE_FLAG_PROTECT_FROM_CLOSE.




Cool! We finally managed to get a new process containing leaked lsass handles without

invoking any OpenProcess or DuplicateHandle directly. 




https://blogger.googleusercontent.com/img/a/AVvXsEi4Bi8WRdH24BMypL0CaTjCm15tNzBE_67YKD0Wjfeh1ToRiyaJOktCZjUg_gYLNhtd-GqlQDRG89RbD9QTuUCDbSox7eW4MWhVV9zGUwjr79WULdF2_1okzMl88ajDeQLAxX7bDnPfUwEcuSoKcURya7BseDCOaZGzab6hSObOaCoufvqVUBmGOK2r=s1920
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-ntopenprocess
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-sethandleinformation


12/17

However the MiniDumpWriteDump call is still reading the lsass process memory directly

and this is a very noisy operation.




One easy improvement for that would be using unhooking or direct system calls

specifically for the NtReadVirtualMemory system call.



However, while they could be effective in most cases, they are not very effective against

moderns EDR. These kind of techniques are flagged as malicious and the EtwTi monitoring

would still catch the remote memory reads.




Any chance to do anything better?






Leveraging process address space cloning for indirect memory
reads



Poking around in ntoskrnl.exe i have found a function that caught my attention for its

name: MiCloneProcessAddressSpace. It has the following definition:




NTSTATUS MiCloneProcessAddressSpace(

        PEPROCESS ProcessToClone,


        PEPROCESS ProcessToInitialize)

What it does, briefly, is to create a copy of the specified "ProcessToClone" address space in

the "ProcessToInitialize".



This is done by iterating through every PTE of the source process and clone them into the

new process. All the pages in the new process are mapped as shared copy-on-write.




Cool! It seems it is what we need. It would be a nice idea to have a new "bridge" process that

has the same memory address space of the real process and could allow us to read it

indirectly without interacting with it.




But, how do we get there? Let's use a bottom-up approach.




The first cross reference returned by IDA is the function

MmInitializeProcessAddressSpace:

NTSTATUS MmInitializeProcessAddressSpace(

        PEPROCESS ProcessToInitialize,


        PEPROCESS ProcessToClone,

        PVOID SectionToMap,


        PULONG CreateFlags)

https://0x00sec.org/t/defeating-userland-hooks-ft-bitdefender/12496
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtReadVirtualMemory.html
https://undev.ninja/introduction-to-threat-intelligence-etw/


13/17

This function checks if the "ProcessToClone" parameter is provided and if that's the case it

will invoke the function to clone the address space MiCloneProcessAddressSpace. We need

to go to the upper caller... 

There are 3 invocations of MmInitializeProcessAddressSpace from PspAllocateProcess.

One of the invocations provides a "ProcessToClone" parameter different from 0 to

MmInitializeProcessAddressSpace. The value provided as the "ProcessToClone" in this

specific invocation is the "ParentObject" for the newly created process. Below a snippet of

reversed code from PspAllocateProcess:




The else branch code is executed if a NULL SectionObject is provided as a parameter to

the function PspAllocateProcess. Then it assigns the parent process section base address to

the new process section base address, so what we need. It starts to look interesting...

Going to the upper caller again we land into PspCreateProcess:

NTSTATUS PspCreateProcess(

        PHANDLE ProcessHandle,

        ACCESS_MASK DesiredAccess,


        POBJECT_ATTRIBUTES ObjectAttributes,
        HANDLE ParentProcess,


        KPROCESSOR_MODE PreviousMode,

        ULONG Flags,


        HANDLE SectionHandle,

        HANDLE DebugPort,


        HANDLE ExceptionPort)




One of the parameter provided to the function is the SectionHandle and this one is of our

interest because it sets the SectionObject value:

If a SectionHandle is passed as a parameter to the function, the kernel tries to get the

SectionObject from the object manager. If not it sets the SectionObject to 0 (what

triggers the chain for the process cloning).

Then it checks if the handle to the parent process provided holds the

PROCESS_CREATE_PROCESS access and gets the parent process object

(ParentObject) from the object manager:



14/17

We are almost there :)

Looking at the cross references of PspCreateProcess we can find the NtCreateProcessEx

function:

NTSTATUS NtCreateProcessEx(

        PHANDLE ProcessHandle,

        ACCESS_MASK DesiredAccess,


        POBJECT_ATTRIBUTES ObjectAttributes,
        HANDLE ParentProcess,


        ULONG Flags,

        HANDLE SectionHandle,


        HANDLE DebugPort,

        HANDLE ExceptionPort,


        ULONG JobMemberLevel)



15/17

NtCreateProcessEx is a system call exposed by the kernel and can be invoked from a

userland process. It turns out that the parameter "SectionHandle" from

NtCreateProcessEx is passed directly to PspCreateProcess.

Cool!



All it requires to create a clone of a process is to invoke NtCreateProcessEx from ntdll.dll

and provide the process handle (with PROCESS_CREATE_PROCESS access) into the

ParentProcess parameter and 0 to the SectionHandle value.




NOTE: at the time of discovery i haven't found any public documentation about

this particular usage of NtCreateProcessEx. Some time after, other researchers

have published the same discovery independently as you can read here and

here. And of course me being upset about the spoiler here :( 

Duplicate happens...

Everything is set up to spawn a lsass process clone and read the memory from it. 

One last thing to adjust is the PROCESS_CREATE_PROCESS access right missing from

the leaked lsass handle. The duplicated handle by seclogon is missing one of the access to

perform the NtCreateProcessEx call. Instead it contains the duplicate access

(PROCESS_DUP_HANDLE) along with some other. 




Using a trick by @tirannido described here, it's possible to get a full access process handle

to lsass starting from the leaked handle as long as it holds the duplicate access.

Explanation below:






"The DuplicateHandle system call has an interesting behaviour when using the pseudo

current process handle, which has the value -1. Specifically if you try and duplicate the

pseudo handle from another process you get back a full access handle to the source process."

quote from Bypassing SACL Auditing on LSASS.




So what we need to do is to perform a DuplicateHandle call in this way:

DuplicateHandle((HANDLE)leakedHandle, (HANDLE)-1, GetCurrentProcess(),

&hLeakedHandleFullAccess, 0, FALSE, DUPLICATE_SAME_ACCESS);

  



The newly duplicated process handle (hLeakedHandleFullAccess) will have enough

access rights to perform the NtCreateProcessEx call in order to create the cloned process. 



We could potentially trigger some registered kernel callback on this specific

DuplicateHandle call raised from our dumping process, but for now we are ok with that

(maybe we could also avoid this? maybe a part 3 blogpost will come out :D).

Demo time!

https://twitter.com/diversenok_zero/status/1463844989612568581
https://twitter.com/BillDemirkapi/status/1464259113081348096
https://twitter.com/splinter_code/status/1463850064095363078
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html


16/17



POC



I have written MalSeclogon, a little tool to play with the seclogon service. It implements all

the techniques shown in this blog post. You can find it here.




Conclusion



In this blog post it has been demonstrated how a series of faults and bad assumptions

could make a windows system service misbehaving in a weird way. An attacker could take

advantage of such behaviors to carry out stealthier operations. 






In this specific scenario we have seen how an attacker can implement a very stealthy

memory dumping technique by abusing an internal windows component: the Secondary

Logon Service.

Defenders shouldn't blindly trust native windows applications, instead they should focus

on the differences between normal and abnormal behavior... The seclogon service opening

a new process handle to lsass is not something you see everyday ;) 



This won't be the last blog post about the seclogon service. In the future posts of "The

hidden side of Seclogon" series i will show other fancy stuff you can do by leveraging this

service.




https://blogger.googleusercontent.com/img/a/AVvXsEiRAsOkkzJ3cKz2LWt0USPncHdEo22jqgQJ8qMbBmwo26wrm8LPkMzgz60RwdFBr-ns_aDmnHaTa-SuIslDpIF6qJi-IscmDLhpV82fXmHFi4lSg20hMSuWtdqC-wA9niEDgzYWlj9ef_pJq68bqou5HMS_53Pb7ZqeU6yfz2pfN6Z18bqKHMSz9Zf6=s1980
https://github.com/antonioCoco/MalSeclogon


17/17




Stay tuned for more content about our beloved seclogon service :D 




References








