
1/5

November 10, 2021

The DLL Search Order And Hijacking It
malwareandstuff.com/the-dll-search-order-and-hijacking-it

If you ever used Process Monitor to track activity of a process, you might have encountered
the following pattern:

Figure 1: Example of dnsapi.dll not being found in the application directory

The image above is a snippet from events captured by Process Monitor during the execution
of x32dbg.exe on Windows 7. DNSAPI.DLL and IPHLPPAPI.DLL are persisted in the System
directory, so you might question yourself:

Why would Windows try to search for either of these DLLs in the application directory
first?

Operating Systems are very complex and so is the challenge of implementing an error-fault
system to search for dependencies, like dynamic linked libraries. Today, we’ll talk about DLL
Search Order and DLL Search Order Hijacking, in particular how it works and how
adversaries can abuse it.

DLL Search Order

First, we have to talk about what happens when a PE File is executed on the Windows
system.

The majority of native binaries you encounter on Windows are linked dynamically. Linked
dynamically means that upon start of the execution, it uses information which are embedded
inside the binary to locate DLLs that are essential for this process. In comparison with
statically linked binaries, when linked dynamically the executable will use the libraries
provided by the OS instead of having them compiled into the executable itself.

Before the dynamically linked executable can use or load these libraries, it will have to know
where these dependencies are persisted on disk or if they are already in memory. This is
where the DLL Search Order makes its appearance. To keep it simple, we will focus only on
Windows Desktop Applications.

https://malwareandstuff.com/the-dll-search-order-and-hijacking-it/


2/5

Pre-Checks and In-Memory Search

Before the Windows OS starts searching for the needed DLL on disk, it will first attempt to
find the needed module in memory. If a DLL is already in memory, it will not loaded it again.
Now this part is a little bit complicated and out of context for this blog article, we would have
to define what “loaded” even means. If you are more interested in the first check, I advise
you to look up the official Microsoft documentation[1].

If the memory check fails, Windows can fall back to using a list of known DLLs. if the needed
library is part of that list, it will use the copy of the known DLL. The list of known DLLs are
persisted in the Windows Registry.

Figure 2: List of KnownDlls on Windows 7

On-Disk Search

If the first two checks fail, the OS will have to search for the DLL on disk. Depending on the
OS Settings, Windows will use a different search order. Per default, Windows enables the
DLL Search Mode feature to harden the system and prevent DLL Search Order Hijacking
attacks, a technique we will explain in the upcoming section.

The key to the feature is as follows:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session

Manager\SafeDllSearchMode

Let’s take a look at the differences of the search order depending whether
SafeDllSearchMode is enabled or not.

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order


3/5



4/5

Figure 3: DLL Search Order flow

We clearly see that the current directory is prioritised if SafeDllSearchMode is disabled and
this can be abused by adversaries. The art of abusing this search order flow is called DLL
Search Order Hijacking.

DLL Search Order Hijacking

Adversaries can abuse the search order flow displayed above to load their own malicious
DLLs instead of the legitimate ones into memory. There are many ways this technique can
be used. However, it is more effective in achieving persistence on the target system then
initial execution.

Let’s take a step back and revisit our example from above:

x32dbg.exe tries to load DNSAPI.DLL
DNSAPI.DLL is not in the list of known DLLs and is also not loaded into memory.
Since SafeDllSearchMode is enabled, it will fall back to the system directory if not
found in the application directory

What would happen, if we craft and place a malicious DLL, named DNSAPI.DLL into the
application directory?

We would be able to hijack the search order flow and force a legitimate application to load
our malicious code into memory.

Practical Use Case

Let’s take a look at a simple practical example. Our application calls LoadLibraryA and tries
to load dnsapi.dll like in our example from above. Next we craft a small DLL file, which
does nothing else but create a message box in the DLLMain function. Once the DLL is loaded
into memory, the main function will be triggered.

In the first run, we do not place the crafted DLL in the application directory. As expected,
Windows will load dnsapi.dll from the system directory:

Next, we will now name our crafted DLL dnsapi.dll and place it in the application directory:



5/5

Whoops! I think we can all think of a couple use cases of how APT groups and malware can
abuse this technique to achieve persistence on the victim’s system.

Real world examples and APTs

For the sake of keeping it simple and explaining the core principles behind this persistence
technique, we’ve build a very simple use case here. Of course, the real world looks a little bit
different and usually attackers have to take into account:

Endpoint Security solutions with behaviour based detections, preventing such attacks
with signatures
Programmatic dependencies, which won’t allow you to just replace a DLL in an
application directory and hope that it will work just fine
and many more

However, if you never heard about this technique, I hope I was able to create some
awareness for it!







