
1/6

February 16, 2021

LSASS Memory Dumps are Stealthier than Ever Before -
Part 2

deepinstinct.com/blog/lsass-memory-dumps-are-stealthier-than-ever-before-part-2

In a previous article, we detailed the numerous ways to dump LSASS memory for credentials

extraction, in this article we show a new way to dump LSASS

Asaf GilboaSecurity Researcher

In a previous article, we detailed the numerous ways to dump LSASS memory for

credentials extraction, in this article we show a new way to dump LSASS without

dropping any new tool on the endpoint.

Technical Overview

There is a very neat way to cause WerFault.exe (Windows Error Reporting process that

handles process crashes) to create a memory dump of lsass.exe, in a directory of your choice.

The major advantage of this technique is that it does not cause lsass.exe to crash, and since

WerFault.exe is used to create file dumps all the time (not just lsass.exe), this method

provides the added advantage of going undetected. WerFault.exe is a process known for

dumping every crashing process, from an attacker standpoint this is appealing as their illicit

credential extraction will appear benign because from a defender’s viewpoint it’s within the

realm of normal activity.

This method relies on a mechanism introduced in Windows 7 called Silent Process Exit,

which provides the ability to trigger specific actions for a monitored process in one of two

scenarios; either the process terminates itself by calling ExitProcess(), or another process

terminates it via the TerminateProcess() API.

There are multiple actions that can be configured to occur upon a silent process exit:

Launch a monitor process

Display a pop-up

Create a dump file

Option #1 can be used as a persistence mechanism. For the purpose of this study, we describe

how to use option #3 for dumping lsass.

To set-up a process for silent exit monitoring, a few registry settings must be set:

https://www.deepinstinct.com/blog/lsass-memory-dumps-are-stealthier-than-ever-before-part-2
https://www.deepinstinct.com/author/asaf-gilboa
https://www.deepinstinct.com/2021/01/24/lsass-memory-dumps-are-stealthier-than-ever-before/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/

2/6

1.

1. The GlobalFlag for the process’ Image File Execution Options must be set to

include the flag

FLG_MONITOR_SILENT_PROCESS_EXIT (0x200)

2. SilentProcessExit must be set by either:

a. Global settings, under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\SilentProcessExit

b. Application-specific settings, under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\SilentProcessExit\ProcessName

The SilentProcessExit settings are set by registry values, for that purpose the interesting ones

are the following:

ReportingMode (REG_DWORD) – Bitwise OR of the following flags:

LAUNCH_MONITORPROCESS (0x1) – Launch a monitor process

LOCAL_DUMP (0x2) – Create a dump file for the process that caused the termination

and the process that was terminated

NOTIFICATION (0x4) – Display pop-up notification

LocalDumpFolder (REG_SZ) – The directory where the dump files will be created.

Default location is %TEMP%\Silent Process Exit.

DumpType – Specifies the type of dump file (Micro, Mini, Heap or Custom) according to

the MINIDUMP_TYPE enum. Full minidump is a value of MiniDumpWithFullMemory

(0x2).

So, what would happen if the SilentProcessExit registry settings are set so that LSASS.exe

will dump itself, and then either lsass.exe is killed or the computer is shut down?

To answer this, we use taskkill to terminate lsass. This brings up this message because

Windows really doesn’t like to have lsass.exe shut down:

3/6

A warning like this is problematic for an endpoint user to see during an attempt to gather

credentials, but it does provide a new directory under C:\temp, which contains the full

memory dump of lsass.

Nice!

A dump of taskkill.exe is also obtained which normally isn’t accessible if the computer had

been shut down, instead of terminating lsass.exe. This happened because the Silent Process

Exit mechanism also causes the process that initiated the termination to be dumped as well.

The question we now need to ask ourselves is – how is the process dumped? Thanks to

Hexacorn's blog, we know that when a process terminates it calls the

RtlReportSilentProcessExit() API from ntdll.dll, which will communicate to the Windows

Error Reporting service (WerSvc under WerSvcGroup) that the process is performing a silent

exit. The WER service will then launch WerFault.exe which will do the dumping of the exiting

process. The interesting thing to notice is that calling this API does not cause the process

to exit. This prompted us to run this process on lsass.exe, to get the file dump, but without

terminating lsass.

Here is the function definition of RtlReportSilentProcessExit():

NTSTATUS
(NTAPI* <span style="color:
#119fc2;">RtlReportSilentProcessExit)
 (

 In <span style="color:
#119fc2;">HANDLE ProcessHandle,

 In<span style="color:
#119fc2;">NTSTATUS ExitStatus

);

But what if we supply a ProcessHandle of LSASS.exe from OUTSIDE of LSASS?

https://www.hexacorn.com/blog/2019/09/19/silentprocessexit-quick-look-under-the-hood/

4/6

Calling RtlReportSilentProcessExit this way would require a handle to lsass.exe with

PROCESS_VM_READ permissions and also need the SeDebugPrivilege privilege, otherwise,

the dump file will be created but without any content. In addition, an x64 process is required

to open a handle to an x64 lsass process.

Using a program we have wrote that does just that, we can see here the dump file created:

That’s great!

Now, we can delete the unnecessary dump of our own process and send the lsass dump to our

attacker server to have the credentials extracted.

But can we go even further and force lsass.exe to create a dump of itself? Using

CreateRemoteThread on lsass.exe, we were able to cause it to run

RtlReportSilentProcessExit:

Voila, Lsass.exe’s own dump file!

From an EDR standpoint, it will appear as though lsass.exe requested a dump of itself from

WER. Since WER is the mechanism in Windows which is responsible for creating dump files

anyway, it is likely to be whitelisted as a process that creates a dump file of lsass.exe in order

to reduce false-positives.

The code to perform both of these methods can be found in our GitHub repository.

Suggested Solutions

https://github.com/deepinstinct/LsassSilentProcessExit

5/6

In the following section, we detail the measures that can be taken to detect dumping of the

lsass.exe process.

Monitoring Registry

Set a rule of registry value creation of GlobalFlag:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Image File Execution Options\lsass.exe

GlobalFlag REG_DWORD 0x200

Note that GlobalFlag is a bitwise OR possibly numerous flags.

The following registry key should also be monitored for creation and for changes:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\SilentProcessExit\lsass.exe

Monitor Files

Set a rule for file creation for anything with the following pattern of file name:

 “lsass*.dmp”

RunAsPPL

Windows enables the ability to launch the lsass.exe process as a Process Protected Light

(PPL), which prevents any non-PPL process from using OpenProcess() to access lsass.exe.

This neutralizes all methods described in this article (besides the full memory dump

methods). The following registry value is required to be set:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa

 RunAsPPL REG_DWORD 0x1

The downside of this method is that setting lsass.exe prevents any third-party DLLs from

loading into it, including known and benign authentication packages. If your organization

utilizes some smart-card solution, for example, this is not an option.

Due to the obscurity of this attack vector available AV and EDR solutions are not going to

have these detection and mitigation configurations in place, rather they will need to be

manually configured. In soon-to-be-delivered upcoming versions, Deep Instinct’s customers

can expect to have automatic protection from this technique within the credential dumping

heuristic.

https://www.deepinstinct.com/automatic-threat-analysis/

6/6

Summary

The numerous ways of dumping LSASS memory give attackers a range of options to stay

undetected by antivirus products and EDRs. This new method that we have introduced to get

a process dump of LSASS to disk, hasn’t been utilized before while the use of WER has the

added benefit of making the illicit memory extraction appear benign. This creates a ripe

opportunity for hackers, with the possibility of many security environments having the file

dump process whitelisted.

https://www.deepinstinct.com/blog

